4.8 Article

Solution-Processed Cu2S Nanostructures for Solar Hydrogen Production

Journal

CHEMISTRY OF MATERIALS
Volume 35, Issue 6, Pages 2371-2380

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.chemmater.2c03489

Keywords

-

Ask authors/readers for more resources

This work addresses the issue of short minority carrier diffusion length in Cu2S by synthesizing nanostructured Cu2S thin films, which enables increased charge carrier collection. The photocathode based on the nanoplate Cu2S reveals enhanced charge carrier collection and improved photoelectrochemical water-splitting performance. This work provides a simple, cost-effective, and high-throughput method to prepare phase-pure nanostructured Cu2S thin films for scalable solar hydrogen production.
Cu2S is a promising solar energy conversion material due to its suitable optical properties, high elemental earth abundance, and nontoxicity. In addition to the challenge of multiple stable secondary phases, the short minority carrier diffusion length poses an obstacle to its practical application. This work addresses the issue by synthesizing nanostructured Cu2S thin films, which enables increased charge carrier collection. A simple solution-processing method involving the preparation of CuCl and CuCl2 molecular inks in a thiol-amine solvent mixture followed by spin coating and low-temperature annealing was used to obtain phase-pure nanostructured (nanoplate and nanoparticle) Cu2S thin films. The photocathode based on the nanoplate Cu2S (FTO/Au/Cu2S/CdS/TiO2/RuOx) reveals enhanced charge carrier collection and improved photoelectrochemical water-splitting performance compared to the photocathode based on the non-nanostructured Cu2S thin film reported previously. A photocurrent density of 3.0 mA cm-2 at -0.2 versus a reversible hydrogen electrode (VRHE) with only 100 nm thickness of a nanoplate Cu2S layer and an onset potential of 0.43 VRHE were obtained. This work provides a simple, cost-effective, and high-throughput method to prepare phase-pure nanostructured Cu2S thin films for scalable solar hydrogen production.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available