4.5 Article

(2E)-1-(2,4,6-Trimethoxyphenyl)-3-(4-chlorophenyl)prop-2-en-1-one, a Chalcone Derivative, Promotes Apoptosis by Suppressing RAS-ERK and AKT/FOXO3a Pathways in Hepatocellular Carcinoma Cells

Journal

CHEMISTRY & BIODIVERSITY
Volume -, Issue -, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/cbdv.202300050

Keywords

chalcone derivative; apoptosis; ERK; MAPK pathway; AKT; FOXO3a signaling pathway; hepatocellular carcinoma

Ask authors/readers for more resources

In this study, it was found that TMOCC inhibits proliferation and promotes apoptosis in liver cancer cells by suppressing the RAS-ERK and AKT/FOXO3a signaling pathways. Additionally, potential target proteins such as ERK1, PARP-1, and BAX were identified. These findings suggest that TMOCC could be a promising multi-target compound for liver cancer treatment.
Background: Liver cancer is an extremely common cancer with the highest mortality rate and poor prognosis. Owing to their low systemic toxicity and few side effects, natural compounds may provide better therapeutic effects for patients. (2E)-1-(2,4,6-trimethoxyphenyl)-3-(4-chlorophenyl)prop-2-en-1-one (TMOCC), a chalcone derivative, exhibits cytotoxicity towards many tumor cells. However, the anticancer mechanism of TMOCC has not been elucidated in human hepatocellular carcinoma (HCC). Methods: Cell Counting Kit-8 and colony formation assays were used to evaluate the effects of TMOCC on viability and proliferation. Mitochondrial transmembrane potential and flow cytometry assays were used to detect apoptosis. The expression levels of proteins related to apoptosis, the RAS-ERK and AKT/FOXO3a signaling pathways were assessed using western blot. Potential targets of TMOCC were detected using molecular docking analysis. Results: TMOCC inhibited viability and proliferation, and induced the loss of mitochondrial transmembrane potential, apoptosis and DNA double-strand breaks in both HCC cells. The RAS-ERK and AKT/FOXO3a signaling pathways were suppressed by TMOCC. Finally, ERK1, PARP-1, and BAX were identified as potential targets of TMOCC. Conclusion: Taken together, our results show that TMOCC promotes apoptosis by suppressing the RAS-ERK and AKT/FOXO3a signaling pathways. TMOCC may be a potential multi-target compound that is effective against liver cancer.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available