4.8 Review

Critical Review on the Mechanisms of Fe2+Regeneration in the Electro-Fenton Process: Fundamentals and Boosting Strategies

Journal

CHEMICAL REVIEWS
Volume 123, Issue 8, Pages 4635-4662

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.chemrev.2c00684

Keywords

-

Ask authors/readers for more resources

This review provides a comprehensive overview of the mechanisms of Fe3+ cathodic reduction in the electro-Fenton (EF) process. Different strategies to improve the reduction rate are discussed, categorized into electron transfer control and mass transport control. Electron transfer control strategies include creating active sites in carbon and metal-based materials and using emerging techniques like single-atom catalysis or confinement effects. Mass transport control approaches involve magnetic fields, pulse electrolysis, interfacial Joule heating effects, and photoirradiation. Challenges and future prospects are also mentioned. This review aims to clarify the Fe3+/Fe2+ cycling process in the EF process, providing insights for the smart design of highly effective wastewater treatment and valorization systems at an industrial scale.
This review presents an exhaustive overview on the mechanisms of Fe3+ cathodic reduction within the context of the electro-Fenton (EF) process. Different strategies developed to improve the reduction rate are discussed, dividing them into two categories that regard the mechanistic feature that is promoted: electron transfer control and mass transport control. Boosting the Fe3+ conversion to Fe2+ via electron transfer control includes: (i) the formation of a series of active sites in both carbon-and metal-based materials and (ii) the use of other emerging strategies such as single-atom catalysis or confinement effects. Concerning the enhancement of Fe2+ regeneration by mass transport control, the main routes involve the application of magnetic fields, pulse electrolysis, interfacial Joule heating effects, and photoirradiation. Finally, challenges are singled out, and future prospects are described. This review aims to clarify the Fe3+/Fe2+ cycling process in the EF process, eventually providing essential ideas for smart design of highly effective systems for wastewater treatment and valorization at an industrial scale.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available