4.7 Article

Degradation mechanisms of natural fiber in the matrix of cement composites

Journal

CEMENT AND CONCRETE RESEARCH
Volume 73, Issue -, Pages 1-16

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.cemconres.2015.02.019

Keywords

Degradation; Durability; Blended cement; Fiber reinforcement

Funding

  1. Erbilgin Family Fellowship at Columbia University

Ask authors/readers for more resources

The degradation mechanisms of natural fiber in the alkaline and mineral-rich environment of cement matrix are investigated. Cement hydration is presented to be a crucial factor in understanding fiber degradation behavior by designing a contrast test to embed sisal fibers in pure and metakaolin modified cement matrices. In addition to durability of sisal fiber-reinforced cement composites determined by means of flexural properties, degradation degree of the embedded fibers is directly evaluated by proposing a novel separation approach. The results indicate that, by reducing alkalinity of pore solution, metakaolin effectively mitigates the deterioration of natural fiber. By combining results of thermogravimetric analysis and microstructure, the alkali degradation process of natural fiber, which consists of hydrolysis of lignin and hemicellulose, stripping of cellulose microfibrils and deterioration of amorphous regions in cellulose chains, is visually presented. Two new concepts of mineralization mechanism, calcium hydroxide (CH)-mineralization and self-mineralization, are also proposed and quantitatively characterized. (C) 2015 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available