4.7 Article

Engineering single-atom catalysts as multifunctional polysulfide and lithium regulators toward kinetically accelerated and durable lithium-sulfur batteries

Journal

CHEMICAL ENGINEERING JOURNAL
Volume 466, Issue -, Pages -

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2023.143182

Keywords

Single -atom catalysts; Polysulfides conversion kinetics; Multifunctional separator; Lithium -sulfur batteries

Ask authors/readers for more resources

Developing an electrocatalyst that can improve the performance of lithium-sulfur batteries is crucial. The utilization of traditional metal electrocatalytic nanoparticles has not met expectations. In this study, a single-atom catalyst with a nitrogen-doped graphene mesh is engineered to achieve high efficiency in catalytic conversion of lithium polysulfides. The catalyst suppresses shuttle effect and enhances sulfur redox kinetics, leading to improved battery performance.
Developing electrocatalyst to ameliorate the shuttling effect of lithium polysulfides (LiPSs), sluggish sulfur redox reaction kinetics and the rampant dendrite growth is of paramount importance for lithium-sulfur (Li-S) batteries. Yet still, the utilization of the most mainstream traditional metal electrocatalytic nanoparticles is far below expectation. Herein, we engineer an exclusive single-atom catalyst with planar Co-N4 coupling of nitrogen-doped graphene mesh (SA-Co/NGM) to achieve exceptional atom utilization efficiency for catalytic conversion of LiPSs. High surface area and ultra-thin two-dimensional texture can not only accommodate high concentration mon-odispersed lithiophilic atomic Co sites, but also guarantee homogenize high-flux Li ion transport, alleviating the formation of Li-dendrites. Critically, the maximized exposure of Co-N4 as a regulator in sulfur electrochemistry can conspicuously suppress the shuttle effect and accelerate bidirectional sulfur redox kinetics via electron delocalization, as demonstrated by a judicious combination of electro-kinetic analysis, in situ spectroscopy and density functional theory (DFT) computations. As expected, the batteries based on a SA-Co/NGM modified separator achieve an ultrahigh rate capability, exceptionally long cycle life and a distinguished favorable areal capacity under high sulfur loading. This work provides a rational design of single-atom catalysts for kinetics -boosted electrocatalysis towards long-lasting Li-S batteries.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available