4.7 Article

Bioinspired multi-stimulus responsive MXene-based soft actuator with self-sensing function and various biomimetic locomotion

Journal

CHEMICAL ENGINEERING JOURNAL
Volume 463, Issue -, Pages -

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2023.142392

Keywords

MXene; Soft actuator; Soft robotics; Self -sensing; Self -oscillation; Biomimetic devices

Ask authors/readers for more resources

A soft actuator based on MXene and polydimethylsiloxane has been designed and fabricated, which can produce reversible large deformation under various forms of stimulus and possesses biological versatility such as self-sensing and diverse locomotion. The actuator utilizes the internal stress generated during the preparation process to achieve its responsive abilities to heat, light, electric, and gas.
Although a series of outstanding achievements have been realized so far, developing soft actuators that can respond to various stimuli and simulate biological versatility (e.g., self-sensing function, diverse locomotion, etc.) is still a great challenge. Here, by utilizing internal stress generated spontaneously during the preparation process, an originally rolled MXene/polydimethylsiloxane (PDMS) bimorph soft actuator has been designed and fabricated. Based on the outstanding photothermal/electrothermal conversion efficiency and adjustable interlayer d-spacing change of Ti3C2Tx MXene, and the large thermal/chemical vapor expansion of crosslinked PDMS, this actuator can produce reversible large deformation under various forms of stimulus, including heat, light, electric, and n-hexane vapor. More importantly, microcracks can be formed spontaneously on the surface of MXene layer during the fabrication process of the actuator, which causes the resistance of MXene layer to be very sensitive to mechanical deformation. Based on this, a light-driven artificial tongue is fabricated, which not only mimic the ejection motion and catching prey behavior of the frog's tongue, but also perceive the touching object. Moreover, a series of sophisticated biomimetic locomotion such as jumping, crawling, and self-oscillation all can be realized by using this soft actuator. Besides, the actuator with rolled initial structure can also be an intelligent gripper with low energy consumption. By doping Fe3O4 nanoparticles in PDMS matrix, the composite actuator can carry object to through complex maze in adjustable magnetic field without additional stimulation. This MXene-based actuator provides new insights in design of next generation of smart actuators with multi-functions and multiform motions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available