4.7 Article

Effect of temporal resolution on the reproduction of chaotic dynamics via reservoir computing

Journal

CHAOS
Volume 33, Issue 6, Pages -

Publisher

AIP Publishing
DOI: 10.1063/5.0143846

Keywords

-

Ask authors/readers for more resources

Reservoir computing is a machine learning paradigm that utilizes a reservoir structure with nonlinearities and short-term memory. It has expanded to various functions including autonomous generation of chaotic time series, time series prediction, and classification. Sampling plays a crucial role in physical reservoir computers, but finding the suitable sampling frequency is essential for effectively regenerating chaotic time series.
Reservoir computing is a machine learning paradigm that uses a structure called a reservoir, which has nonlinearities and short-term memory. In recent years, reservoir computing has expanded to new functions such as the autonomous generation of chaotic time series, as well as time series prediction and classification. Furthermore, novel possibilities have been demonstrated, such as inferring the existence of previously unseen attractors. Sampling, in contrast, has a strong influence on such functions. Sampling is indispensable in a physical reservoir computer that uses an existing physical system as a reservoir because the use of an external digital system for the data input is usually inevitable. This study analyzes the effect of sampling on the ability of reservoir computing to autonomously regenerate chaotic time series. We found, as expected, that excessively coarse sampling degrades the system performance, but also that excessively dense sampling is unsuitable. Based on quantitative indicators that capture the local and global characteristics of attractors, we identify a suitable window of the sampling frequency and discuss its underlying mechanisms.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available