4.7 Article

Activation of ERK1/2 by MOS and TPL2 leads to dasatinib resistance in chronic myeloid leukaemia cells

Journal

CELL PROLIFERATION
Volume 56, Issue 6, Pages -

Publisher

WILEY
DOI: 10.1111/cpr.13420

Keywords

-

Categories

Ask authors/readers for more resources

The development of BCR::ABL1 tyrosine kinase inhibitors has greatly improved survival in chronic myeloid leukaemia (CML) patients. However, resistance to these inhibitors is a clinical problem. This study investigated the mechanism of resistance to dasatinib, a BCR::ABL1 tyrosine kinase inhibitor, and found that elevated expression and activation of MOS, TPL2 and ERK1/2 were involved in dasatinib resistance. Inhibition of these proteins overcame the resistance.
The development of BCR::ABL1 tyrosine kinase inhibitors (TKIs), such as dasatinib, has dramatically improved survival in cases of chronic myeloid leukaemia (CML). However, the development of resistance to BCR::ABL1 TKIs is a clinical problem. BCR::ABL1 TKI resistance is known to have BCR::ABL1-dependent or BCR::ABL1-independent mechanisms, but the mechanism of BCR::ABL1 independence is not well understood. In the present study, we investigated the mechanism of BCR::ABL1-independent dasatinib resistance. The expression and activation level of genes or proteins were evaluated using array CGH, real time PCR, or western blot analysis. Gene expression was modulated using siRNA-mediated knockdown. Cell survival was assessed by using trypan blue dye method. We found that dasatinib-resistant K562/DR and KU812/DR cells did not harbour a BCR::ABL1 mutation but had elevated expression and/or activation of MOS, TPL2 and ERK1/2. In addition, MOS siRNA, TPL2 siRNA and trametinib resensitized dasatinib-resistant cells to dasatinib. Moreover, expression levels of MOS in dasatinib non-responder patients with CML were higher than those in dasatinib responders, and the expression of TPL2 tended to increase in dasatinib non-responder patients compared with that in responder patients. Our results indicate that activation of ERK1/2 by elevated MOS and TPL2 expression is involved in dasatinib resistance, and inhibition of these proteins overcomes dasatinib resistance. Therefore, MOS, TPL2 and ERK1/2 inhibitors may be therapeutically useful for treating BCR::ABL1-independent dasatinib-resistant CML.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available