4.4 Article

MicroRNA-17-3p protects against excessive posthypoxic autophagy in H9C2 cardiomyocytes via PTEN-Akt-mTOR signaling pathway

Journal

CELL BIOLOGY INTERNATIONAL
Volume 47, Issue 5, Pages 943-953

Publisher

WILEY
DOI: 10.1002/cbin.11999

Keywords

autophagy; cardiomyocytes; hypoxia; reoxygenation; microRNA; rat

Categories

Ask authors/readers for more resources

miR-17-3p attenuates myocardial ischemia/reperfusion injury by inhibiting PTEN activity and suppressing excessive autophagy via the Akt/mTOR signaling pathway.
The activity of phosphatase and tensin homolog (PTEN) can be inhibited by miR-17-3p, which results in attenuating myocardial ischemia/reperfusion injury (IRI), however, the mechanism behind this phenomenon is still elusive. Suppression of PTEN leads to augmented protein kinase B (Akt)/mammalian target of rapamycin (mTOR) signaling strength and constrained autophagy activation, which might be the one mechanism for the ameliorated myocardial IRI. Thus, we tested the hypothesis that miR-17-3p attenuated hypoxia/reoxygenation (H/R)-mediated damage in cardiomyocytes by downregulating excessive autophagy via the PTEN-Akt-mTOR axis. The expression of miR-17-3p was remarkably increased after H/R treatment (6-h hypoxia followed by 6-h reoxygenation; H6/R6), which was concomitant with the increase of the release of lactic acid dehydrogenase (cell injury marker) and the enhancement LC3II/I ratio (autophagy markers) in H9C2 cardiomyocytes. Ectoexpression of miR-17-3p agomir led to remarkable augmentation of miR-17-3p expression and evidently attenuated H/R-mediated cell damage and excessive autophagy. Furthermore, an increase in miR-17-3p expression elicited constrained phosphorylation of PTEN (Ser(380)) while enhanced the phosphorylation of Akt (Thr(308), Ser(473)) and mTOR (Ser(536)) after H/R stimulation. In addition, pretreatment with LY-294002 (an Akt selective inhibitor) and rapamycin (an mTOR selective inhibitor) significantly abrogated the protective function of miR-17-3p on H/R-mediated cell damage and autophagy in H9C2 cardiomyocytes. Taken together, these observations indicated that the enhancement of the PTEN/Akt/mTOR axis and the consequent suppression of autophagy overactivation might represent an underlying mechanism by which miR-17-3p attenuated H/R-mediated damage in H9C2 cells.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available