4.6 Article

Loss of exosomal miR-200b-3p from hypoxia cancer-associated fibroblasts promotes tumorigenesis and reduces sensitivity to 5-Flourouracil in colorectal cancer via upregulation of ZEB1 and E2F3

Journal

CANCER GENE THERAPY
Volume 30, Issue 6, Pages 905-916

Publisher

SPRINGERNATURE
DOI: 10.1038/s41417-023-00591-5

Keywords

-

Ask authors/readers for more resources

Hypoxia and exosome-mediated transfer of miRNAs from cancer-associated fibroblasts (CAFs) promote colorectal cancer (CRC) progression.
Hypoxia-mediated tumor progression is a major clinical challenge in human cancers including colorectal cancer (CRC). In addition, exosome-mediated transfer of miRNAs from cancer-associated fibroblasts (CAFs) to cancer cells could promote tumor progression. However, the mechanisms by which hypoxia CAFs promotes CRC progression remain largely unknown. CAFs and normal fibroblasts (NFs) were isolated from CRC tissues and adjacent normal tissues. Next, exosomes were isolated from the supernatant of CAFs that cultured under normoxia (CAFs-N-Exo) and hypoxia (CAFs-H-Exo). RNA-sequencing was then performed to identify differentially expressed miRNAs (DEMs) between CAFs-N-Exo and CAFs-H-Exo. Compared with exosomes derived from normoxia CAFs, exosomes derived from hypoxic CAFs were able to promote CRC cell proliferation, migration, invasion, stemness and reduce the sensitivity of CRC cells to 5-fluorouracil (5-FU). In addition, miR-200b-3p levels were dramatically decreased in exosomes derived from hypoxic CAFs. Remarkably, increasing exosomal miR-200b-3p in hypoxic CAFs reversed the promoting effects of hypoxic CAFs on CRC cell growth in vitro and in vivo. Furthermore, miR-200b-3p agomir could inhibit CRC cell migration, invasion, stemness and increase the sensitivity of SW480 cells to 5-FU via downregulating ZEB1 and E2F3. Collectively, loss of exosomal miR-200b-3p in hypoxia CAFs could contribute to CRC progression via upregulation of ZEB1 and E2F3. Thus, increasing exosomal miR-200b-3p might serve as an alternative approach for the treatment of CRC.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available