4.4 Article

Emetine, a small molecule natural product, displays potent anti-gastric cancer activity via regulation of multiple signaling pathways

Journal

CANCER CHEMOTHERAPY AND PHARMACOLOGY
Volume 91, Issue 4, Pages 303-315

Publisher

SPRINGER
DOI: 10.1007/s00280-023-04521-y

Keywords

Gastric cancer; Emetine; YAP; PI3K; AKT; Wnt; MAPKs

Ask authors/readers for more resources

This study aimed to evaluate the efficacy of emetine against gastric cancer (GC) and explore its molecular mechanisms. The results demonstrated that emetine effectively inhibited GC cell growth, induced apoptosis, blocked migration and invasion, and regulated multiple signaling pathways. Emetine could be a potential drug candidate for GC treatment.
BackgroundGastric cancer (GC) is a life-threatening malignant tumor with high incidence rate. Despite great progress, there are still many GC sufferers that cannot benefit from the existing anti-GC treatments. Therefore, it is still necessary to develop novel medicines against GC. Emetine, a natural small molecule isolated from Psychotria ipecacuanha, has been broadly used for medicinal purposes including cancer treatment. Here, we conducted a comprehensive study on the anti-GC effects of emetine and the related mechanisms of action.MethodsThe cell viability was evaluated by MTT and colony formation assay. Cellular proliferation and apoptosis were analyzed by edu incorporation assay and Annexin V-PI staining, respectively. Moreover, wound healing assay and transwell invasion assay were conducted to detect cell migration and invasion after treatment with emetine. To elucidate the molecular mechanism involved in the anti-GC effects of emetine, RNA sequencing and functional enrichment analysis were carried out on MGC803 cells. Then, the western blot analysis was performed to further verify the anti-GC mechanism of emetine. In vivo anti-tumor efficacy of emetine was evaluated in the MGC803 xenograft model.ResultsMTT and colony formation assay exhibited a strong potency of emetine against GC cell growth, with IC50 values of 0.0497 mu M and 0.0244 mu M on MGC803 and HGC-27 cells, respectively. Further pharmacodynamic studies revealed that emetine restrained the growth of GC cells mainly via proliferation inhibition and apoptosis induction. Meanwhile, emetine also had the ability to block GC cell migration and invasion. The results of RNA sequencing and western blot showed that emetine acted through regulating multiple signaling pathways, including not only MAPKs and Wnt/beta-catenin signaling axes, but also PI3K/AKT and Hippo/YAP signaling cascades that were not found in other tumor types. Notably, the antitumor efficacy of emetine could also be observed in MGC803 xenograft models.ConclusionOur data demonstrate that emetine is a promising lead compound and even a potential drug candidate for GC treatment, deserving further structural optimization and development.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available