4.1 Article

Characterization of Plasmodiophora brassicae pathotypes from western Canada in 2019-2020

Journal

CANADIAN JOURNAL OF PLANT PATHOLOGY
Volume -, Issue -, Pages -

Publisher

TAYLOR & FRANCIS INC
DOI: 10.1080/07060661.2023.2212639

Keywords

Brassica napus; canola; clubroot; oilseed rape; pathotypes; Plasmodiophora brassicae; resistance

Categories

Ask authors/readers for more resources

Clubroot is a significant soilborne disease of canola on the Canadian Prairies. New pathotypes of the causative agent, Plasmodiophora brassicae, have emerged that can overcome the commonly used resistance. Monitoring for pathotypes is crucial for managing resistance.
Clubroot, caused by Plasmodiophora brassicae, is a major soilborne disease of canola (Brassica napus) on the Canadian Prairies. Most canola cultivars carry what is now referred to as 'first-generation' resistance, which represents the most widely used clubroot management tool. Unfortunately, new pathotypes of P. brassicae have emerged that can overcome this resistance. By 2018, 36 unique pathotypes of P. brassicae had been identified on the Prairies based on their virulence on the Canadian Clubroot Differential (CCD) set, with pathotypes 3A, 3D and 3 H being predominant. Since the virulence of P. brassicae populations can shift rapidly in response to host selection pressure, continued pathotype monitoring is important for resistance stewardship. Clubbed roots were collected from 133 canola crops (126 in Alberta, 6 in Saskatchewan, 1 in Manitoba) in 2019 and 127 crops (113 in Alberta, 13 in Saskatchewan, 1 in Manitoba) in 2020, and evaluated for their CCD pathotype designations. Twenty-five unique pathotypes were identified across the sampled crops over the two years of the study; these included seven novel pathotypes, six of which could overcome first-generation resistance (3C, 8 G, 8I, 9D, 9E and 9F). While pathotypes 3A, 3D and 3 H continued to be identified frequently in 2019 and 2020, several others, most notably pathotype 8E (virulent on hosts with first-generation resistance), had also become more common by 2020. The results indicate the continued emergence of new P. brassicae pathotypes on canola.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available