4.6 Article

Cloacal microbiota are biogeographically structured in larks from desert, tropical and temperate areas

Journal

BMC MICROBIOLOGY
Volume 23, Issue 1, Pages -

Publisher

BMC
DOI: 10.1186/s12866-023-02768-2

Keywords

Alaudidae; Avian microbiota; Cloacal microbiota; Host-microbiome; Microbial biogeography

Categories

Ask authors/readers for more resources

In this study, the cloacal gut microbiota of closely-related songbird species inhabiting different geographic regions were investigated. The results showed that geographical location and host species had significant influences on the diversity, co-occurrence, abundance, and community composition of the gut microbiota. The findings suggest that host-associated microbiota follow large-scale macro-ecological patterns, contrasting with previous studies on free-living microbes.
BackgroundIn contrast with macroorganisms, that show well-documented biogeographical patterns in distribution associated with local adaptation of physiology, behavior and life history, strong biogeographical patterns have not been found for microorganisms, raising questions about what determines their biogeography. Thus far, large-scale biogeographical studies have focused on free-living microbes, paying little attention to host-associated microbes, which play essential roles in physiology, behavior and life history of their hosts. Investigating cloacal gut microbiota of closely-related, ecologically similar free-living songbird species (Alaudidae, larks) inhabiting desert, temperate and tropical regions, we explored influences of geographical location and host species on alpha-diversity, co-occurrence of amplicon sequence variants (ASVs) and genera, differentially abundant and dominant bacterial taxa, and community composition. We also investigated how geographical distance explained differences in gut microbial community composition among larks.ResultsGeographic location did not explain variation in richness and Shannon diversity of cloacal microbiota in larks. Out of 3798 ASVs and 799 bacterial genera identified, 17 ASVs (< 0.5%) and 43 genera (5%) were shared by larks from all locations. Desert larks held fewer unique ASVs (25%) than temperate zone (31%) and tropical larks (34%). Five out of 33 detected bacterial phyla dominated lark cloacal gut microbiomes. In tropical larks three bacterial classes were overrepresented. Highlighting the distinctiveness of desert lark microbiota, the relative abundances of 52 ASVs differed among locations, which classified within three dominant and 11 low-abundance phyla. Clear and significant phylogenetic clustering in cloacal microbiota community composition (unweighted UniFrac) showed segregation with geography and host species, where microbiota of desert larks were distinct from those of tropical and temperate regions. Geographic distance was nonlinearly associated with pairwise unweighted UniFrac distances.ConclusionsWe conclude that host-associated microbiota are geographically structured in a group of widespread but closely-related bird species, following large-scale macro-ecological patterns and contrasting with previous findings for free-living microbes. Future work should further explore if and to what extent geographic variation in host-associated microbiota can be explained as result of co-evolution between gut microbes and host adaptive traits, and if and how acquisition from the environmental pool of bacteria contributes to explaining host-associated communities.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available