4.3 Article

Deep learning and differential equations for modeling changes in individual-level latent dynamics between observation periods

Journal

BIOMETRICAL JOURNAL
Volume 65, Issue 6, Pages -

Publisher

WILEY
DOI: 10.1002/bimj.202100381

Keywords

deep learning; dynamic modeling; longitudinal data; observational data; variable selection

Ask authors/readers for more resources

When modeling longitudinal biomedical data, both dimensionality reduction and dynamic modeling are needed. This study proposes an extension that allows different sets of differential equation parameters for observation subperiods, improving the model's fit with a small dataset. The approach successfully identifies individual-level parameters and promising predictors for predicting resilience and informing future study design.
When modeling longitudinal biomedical data, often dimensionality reduction as well as dynamic modeling in the resulting latent representation is needed. This can be achieved by artificial neural networks for dimension reduction and differential equations for dynamic modeling of individual-level trajectories. However, such approaches so far assume that parameters of individual-level dynamics are constant throughout the observation period. Motivated by an application from psychological resilience research, we propose an extension where different sets of differential equation parameters are allowed for observation subperiods. Still, estimation for intra-individual subperiods is coupled for being able to fit the model also with a relatively small dataset. We subsequently derive prediction targets from individual dynamic models of resilience in the application. These serve as outcomes for predicting resilience from characteristics of individuals, measured at baseline and a follow-up time point, and selecting a small set of important predictors. Our approach is seen to successfully identify individual-level parameters of dynamic models that allow to stably select predictors, that is, resilience factors. Furthermore, we can identify those characteristics of individuals that are the most promising for updates at follow-up, which might inform future study design. This underlines the usefulness of our proposed deep dynamic modeling approach with changes in parameters between observation subperiods.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available