4.7 Article

Fully human monoclonal antibody targeting activated ADAM10 on colorectal cancer cells

Journal

BIOMEDICINE & PHARMACOTHERAPY
Volume 161, Issue -, Pages -

Publisher

ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER
DOI: 10.1016/j.biopha.2023.114494

Keywords

ADAM10; Monoclonal antibody; Notch; COLO205; Colorectal cancer; Chemotherapy; Xenograft

Ask authors/readers for more resources

Metastasis and chemoresistance in colorectal cancer can be inhibited by targeting the substrate-binding region of ADAM10, a metalloprotease that regulates Notch signaling in certain cancer stem cells. A human monoclonal antibody named 1H5 was developed to bind to the substrate-binding domain of ADAM10, inhibiting Notch cleavage and proliferation of colon cancer cells. In mouse models, 1H5 combined with Irinotecan showed highly effective tumor growth inhibition without toxicity. This approach overcomes the limitations of small molecule inhibitors that target the protease active site and exhibit musculoskeletal toxicity.
Metastasis and chemoresistance in colorectal cancer are mediated by certain poorly differentiated cancer cells, known as cancer stem cells, that are maintained by Notch downstream signaling initiated upon Notch cleavage by the metalloprotease ADAM10. It has been shown that ADAM10 overexpression correlates with aberrant signaling from Notch, erbBs, and other receptors, as well as a more aggressive metastatic phenotype, in a range of cancers including colon, gastric, prostate, breast, ovarian, uterine, and leukemia. ADAM10 inhibition, therefore, stands out as an important and new approach to deter the progression of advanced CRC. For targeting the ADAM10 substrate-binding region, which is located outside of the catalytic domain of the protease, we generated a human anti-ADAM10 monoclonal antibody named 1H5. Structural and functional characterization of 1H5 reveals that it binds to the substrate-binding cysteine-rich domain and recognizes an activated ADAM10 conformation present on tumor cells. The mAb inhibits Notch cleavage and proliferation of colon cancer cell lines in vitro and in mouse models. Consistent with its binding to activated ADAM10, the mAb augments the catalytic activity of ADAM10 towards small peptide substrates in vitro. Most importantly, in a mouse model of colon cancer, when administered in combination with the therapeutic agent Irinotecan, 1H5 causes highly effective tumor growth inhibition without any discernible toxicity effects. Our singular approach to target the ADAM10 substrate-binding region with therapeutic antibodies could overcome the shortcomings of previous intervention strategies of targeting the protease active site with small molecule inhibitors that exhibit musculoskeletal toxicity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available