4.6 Article

Promotion of degradative autophagy by 6-bromoindirubin-3'-oxime attenuates neuropathy

Journal

BIOFACTORS
Volume -, Issue -, Pages -

Publisher

WILEY
DOI: 10.1002/biof.1977

Keywords

autophagy; diabetic neuropathy; ER stress; neuropathy; 6-BIO

Ask authors/readers for more resources

Damage to the central or peripheral nervous system causes neuropathic pain. Endoplasmic reticulum (ER) stress plays a role in peripheral neuropathy. Increase in ER stress is seen in diabetic neuropathy. Inducers of ER stress also give rise to peripheral neuropathy. ER stress leads to the formation of autophagosomes but their degradation is stalled, leading to accumulation of autophagosomes. Accumulation of autophagosomes has deleterious effects on cells. In this study, treatment with the ER stress inducer tunicamycin (TM) in mice resulted in peripheral neuropathy, which was decreased by subsequent treatment with 6-bromoindirubin-3'-oxime (6-BIO), a promoter of autophagy. 6-BIO also reduced diabetic peripheral neuropathy. Activation of degradative autophagy and reduction of secretory autophagy by 6-BIO contributed to its neuroprotective effects.
Damage to the central or peripheral nervous system causes neuropathic pain. Endoplasmic reticulum (ER) stress plays a role in peripheral neuropathy. Increase in ER stress is seen in diabetic neuropathy. Inducers of ER stress also give rise to peripheral neuropathy. ER stress leads to the formation of autophagosome but as their degradation is also stalled during ER stress accumulation of autophagosomes is seen. Accumulation of autophagosomes has deleterious effects on cells. In the present study, we show that treatment with tunicamycin (TM) (ER stress inducer) in mice leads to peripheral neuropathy as assessed by Von Frey and Hot plate method. Administration of a promoter of autophagy viz. 6-bromoindirubin-3 '-oxime (6-BIO) subsequent to ER stress induced by TM exhibits a decrease in peripheral neuropathy. 6-BIO was also effective in reducing diabetic peripheral neuropathy. To understand the type of autophagy activated, SH-SY5Y cells were treated with 6-BIO after TM treatment. Levels of cathepsin D (CTSD), a marker for degradative autophagy was higher in cells treated with 6-BIO after TM treatment compared to only TM-treated SH-SY5Y cells while levels of Rab8A,-a marker for secretory autophagy was reduced. Furthermore, in parallel during ER stress secretory, we noted increased levels of lysozyme in autophagosomes destined for secretion. Cells treated with 6-BIO showed reduction of lysozyme in secretory autophagosomes. This shows that 6-BIO increased degradative autophagy and reduced the secretory autophagy. 6-BIO also reduced the caspase-3 activity in 6-BIO-treated cells. Thus, 6-BIO reduced neuropathy in animals by activating degradative autophagy and reducing the secretory autophagy.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available