4.7 Article

Klf4 haploinsufficiency in Sp7+ lineage leads to underdeveloped mandibles and insufficient elongation of mandibular incisor

Publisher

ELSEVIER
DOI: 10.1016/j.bbadis.2022.166636

Keywords

KLF4; Mandible; Tooth development; Osteogenesis; Osteoclastogenesis; RANKL

Ask authors/readers for more resources

This study found that mice with KLF4 deficiency had underdeveloped mandibles and decreased alveolar bone mass. The reduced expression of osteoblast-related genes and attenuated osteoclastogenesis were also observed in these mice. The findings suggest that KLF4 plays a critical role in mandibular development.
The mandible is an important component of the craniofacial bones, whose development is regulated by complex molecular networks and involves the well-coordinated development of the bone, cartilage, and teeth. Previously, we demonstrated that Kruppel-like factor 4 (KLF4) promoted dentinogenesis and osteogenesis, but it was enigmatic whether Klf4 participated in the development of the mandible. In this study, the Sp7-Cre; Klf4f/+ mice exhibited underdeveloped mandibles and insufficient elongation of the mandibular incisor when compared with Klf4f/+ and Sp7-Cre mice. Moreover, morphological and molecular analysis showed that the alveolar bone mass was significantly decreased in KLF4 deficient mice, accompanied by reduced expression of osteoblast-related genes. Meanwhile, the KLF4 deficient mice had decreased expression of receptor activator of nuclear factor kappa-B ligand (RANKL) and no significant change of osteoprotegerin (OPG) in the alveolar bone near the mandibular incisor. Simultaneously, the osteoclastogenesis in the alveolar bone of KLF4 deficient mice was attenuated, which was demonstrated by a diminished number of tartrate-resistant acid phosphatase positive (TRAP+), matrix metallopeptidase 9 positive (MMP9+), and cathepsin K positive (CTSK+) multinucleated os-teoclasts, respectively. Collectively, our study suggested that Klf4 participated in mandibular development, and Klf4 in Sp7+ lineage affected osteogenesis directly and osteoclastogenesis indirectly.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available