4.6 Article

Epidermal growth factor represses differentiation of mouse trophoblast stem cells into spongiotrophoblast cells via epidermal growth factor receptor

Journal

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.bbrc.2023.03.059

Keywords

Trophoblast stem cell; Trophoblast differentiation; Epidermal growth factor; Spongiotrophoblast cell

Ask authors/readers for more resources

The role of EGF signaling in mouse trophoblast differentiation was investigated using mouse trophoblast stem cells (mTSCs) in an in vitro culture system. EGF stimulation at the early stage of differentiation repressed mTSC differentiation into spongiotrophoblast cells (SpT) through the EGF-Egfr-MAPK/ERK-Mash2 axis. Inhibition of the MAPK/ERK pathway alleviated the EGF-mediated repression of SpT differentiation. These findings provide insights into the molecular mechanisms underlying trophoblast cell fate decisions.
The mouse placenta is composed of three different trophoblast layers that are occupied by particular trophoblast subtypes to maintain placental function and pregnancy. Accurate control of trophoblast differentiation is required for proper placental function; however, the molecular mechanisms underlying cell fate decisions in trophoblast stem cells remain poorly understood. Epidermal growth factor (EGF) signaling is involved in multiple biological processes including cell survival, proliferation, and differ-entiation. The effect of EGF on trophoblast function has been reported in various species; however, the role of EGF signaling in mouse trophoblast specification remains unclear. In this study, we aimed to elucidate the role of EGF signaling in mouse trophoblast differentiation using mouse trophoblast stem cells (mTSCs) in an in vitro culture system. EGF stimulation at the early stage of differentiation repressed mTSC differentiation into spongiotrophoblast cells (SpT). Gene deletion and inhibitor experiments showed that the effect of EGF exposure went through epidermal growth factor receptor (Egfr) activity in mTSCs. EGF stimuli induced acute downstream activation of MAPK/ERK, PI3K/AKT, and JNK pathways, and inhibition of the MAPK/ERK pathway, but not others, alleviated EGF-mediated repression of SpT differentiation. Moreover, expression of Mash2, a master regulator of SpT differentiation, was repressed by EGF stimulation, and MAPK/ERK inhibition counteracted this repression. The Mash2 overexpression recovered SpT marker expression, indicating that the decrease in Mash2 expression was due to abnormal SpT differentiation in EGF-treated mTSCs. Our findings suggest that the EGF-Egfr-MAPK/ERK-Mash2 axis is a core regulatory mechanism for the EGF-mediated repression of SpT differentiation.(c) 2023 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available