4.7 Article

On the importance of the model representation of organic aerosol in simulations of the direct radiative effect of Siberian biomass burning aerosol in the eastern Arctic

Journal

ATMOSPHERIC ENVIRONMENT
Volume 309, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.atmosenv.2023.119910

Keywords

Biomass burning; Organic aerosol; Radiative forcing; Volatility basis set; Microphysical model; Mie theory calculations; Radiative transfer

Ask authors/readers for more resources

Shortcomings and uncertainties in the model representation of organic aerosol (OA) aging have been identified as a potential source of uncertainty in OA simulations. This study focuses on the importance of model representation of OA for simulating the radiative effect of Siberian BB aerosol in the eastern Arctic.
Shortcomings and uncertainties in the model representation of atmospheric transformations (the aging) of organic aerosol (OA) have long been identified as one of the potential sources of considerable uncertainty in OA simulations with both global and regional models. However, the impact of this uncertainty on predictions of radiative and climate effects of both anthropogenic and biomass burning (BB) aerosol yet needs to be understood. This study examines the importance of the model representation of OA for simulating the direct radiative effect (DRE) of Siberian BB aerosol in the eastern Arctic. We employ a regional coupled chemistry-meteorology model and a global fire emission database to simulate the optical properties and DRE of BB aerosol emitted from intense Siberian fires in July 2016 and compare the DRE estimates that were obtained using two alternative representations of Siberian BB OA. One of them is a default OA representation that predicts very little secondary OA (SOA), and another involves a simple original OA parameterization that has been developed previously within the volatility basis set (VBS) framework and features a strong production of SOA. The simulations of the aerosol optical properties are evaluated against satellite observations of the aerosol optical depth (AOD) in Siberia and the Arctic as well as against values of the single scattering albedo derived from in situ observations of the aerosol absorption and scattering coefficients at four Arctic sites. While the simulations with the default OA representation are found to strongly underestimate AOD both in Siberia and the eastern Arctic, the use of the VBS parameterization considerably improves the agreement between the AOD simulations and observations in both regions. Simulations of the single scattering albedo are found to be overall rather adequate with both representations. Differences in the OA representations are found to result in major differences in the estimates of the DRE of Siberian BB aerosol in the eastern Arctic. Specifically, although the simulations with both representations predict that the DRE is predominantly negative at the top of the atmosphere (TOA), the magnitude of the mean DRE is found to be more than twice as large (6.0 W m-2) with the VBS parameterization than with the default OA representation (2.8 W m-2). An even larger difference (by a factor of 3.5) is found between the estimates of the DRE over the snow-or ice-covered areas. The different treatments of the BB OA evolution are associated also with considerably different contributions of black and brown carbon to the DRE estimates. Overall, our results indicate that model estimates of the DRE of Siberian BB aerosol in the eastern Arctic are strongly sensitive to the assumptions regarding the evolution of OA in Siberian BB plumes and that the SOA formation in these plumes is one of the major factors determining the magnitude of the radiative effects of Siberian BB aerosol in the real atmosphere.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available