4.7 Article

Numerical investigation of magneto-thermal-convection impact on phase change phenomenon of Nano-PCM within a hexagonal shaped thermal energy storage

Journal

APPLIED THERMAL ENGINEERING
Volume 223, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.applthermaleng.2023.119984

Keywords

Melting process; Magneto-thermal-convection; ferro-PCM; Uniform magnetic field; Hexagonal shaped

Ask authors/readers for more resources

This study investigates the melting process of paraffin enhanced with metallic alumina nanoparticles inside a hexagonal heat storage unit in the presence of a uniform magnetic field. The results show that the Lorentz force can suppress the charging level of the thermal energy storage system, while the magnetic field inclination angle can control the energy transport and melting motion. Furthermore, increasing the nanoparticle concentration reduces the melting process.
Latent heat storage is among the most effective thermal energy storage techniques. The heat can be stored or released in a phase change substance undergoing melting or solidification. The present research addresses the melting process of paraffin, a phase change material, enhanced with metallic alumina nanoparticles, inside a hexagonal heat storage unit in the presence of a uniform magnetic field is investigated. The melting process occurs during the thermal charge of the latent heat storage unit. The enthalpy-porosity method was employed to model the melting process. The influence of the Lorentz force strength and magnetic field inclination angle as well as the nanoparticle concentration on charging level was scrutinized. It was found that the Lorentz force can suppress the charging level of the thermal energy storage system, while the magnetic field inclination angle can be suitable to control the energy transport performance and melting motion within the thermal energy storage unit. Moreover, raising the nanoadditives concentration diminishes the melting process. Overall, the obtained results confirmed that altering the intensity or direction of the external magnetic field presents indeed a mean for controlling the flow and thermal behavior of nano-enhanced phase change materials. Imposing the Ha up to 500 increases 266% the dimensionless melting time compared to ignoring magnetic field (Ha = 0).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available