4.7 Article

Surface-active ionic liquids near the electrode surface: Development and influence on molecular dynamics simulations

Journal

APPLIED SURFACE SCIENCE
Volume 614, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.apsusc.2022.156200

Keywords

Ionic liquid electrolyte; Crowding; Compact layer; Molecular dynamics simulation; Unsaturated heterocyclic structure

Ask authors/readers for more resources

The changing self-assembled nanostructures of catanionic surface-active ionic liquid (SAILs) with unsaturated heterocycles were investigated using molecular dynamics simulations. It was found that SAILs with unsaturated heterocycles exhibited unique charging processes and different performances for energy storage due to their different cation nanostructures near negative electrodes. The unsaturated heterocycles have a high tendency to align parallel to the electrode plate, increasing the Coulombic interaction and bringing additional cations closer to the electrode, leading to a higher energy density.
To examine the changing self-assembled nanostructures of ionic liquid (IL)-based electrolytes during energy storage, electrolyte systems [P14,6,6,6][C8SO4], [N8888][C8SO4], [P4444][C8SO4], [C6mim][C8SO4], [P14,6,6,6] [AOT], [Bpyr][AOT], [BMpy][AOT], [Bpip][AOT], and [Cnmim][AOT] (n = 2, 4, 6, 8, 10 and 12) were investigated using molecular dynamics simulations. The catanionic surface-active ILs (SAILs) had been used as electrolytes or components of electrolytes in supercapacitors and batteries over a wide range of temperatures, exhibiting superior performance than nonamphiphilic ILs. However, catanionic SAILs were inferior in terms of energy storage effect compared to SAILs with unsaturated heterocyclic structures. Our study showed that SAILs with unsaturated heterocycles structure exhibit unique charging processes and different performances for energy storage owing to different cation nanostructures near negative electrodes. The unsaturated heterocycles exhibited a high tendency to be oriented in parallel to the electrode plate, increasing the Coulombic interaction between the layers of the cations and the electrode surface and bringing additional cations closer to the electrode. This arrangement increases the probability of obtaining a greater energy density compared to other saturated heterocyclic SAILs or catanionic SAILs that have W-shaped cations close to the negative electrode.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available