4.6 Article

Antiferromagnetic insulatronics: Spintronics in insulating 3d metal oxides with antiferromagnetic coupling

Journal

APPLIED PHYSICS LETTERS
Volume 122, Issue 8, Pages -

Publisher

AIP Publishing
DOI: 10.1063/5.0135079

Keywords

-

Ask authors/readers for more resources

Antiferromagnetic transition metal oxides are extensively studied in the field of spin-based electronics, commonly used as passive elements in exchange bias-based memory devices. Recent observations of long-distance spin transport, current-induced switching, and THz emission have renewed interest in these insulating materials, which are now considered attractive candidates for active elements in future spintronic devices. This article discusses promising materials systems and recent advances in reading and writing antiferromagnetic ordering, providing an overview of current research and potential future directions in the field of antiferromagnetic insulatronics.
Antiferromagnetic transition metal oxides are an established and widely studied materials system in the context of spin-based electronics, commonly used as passive elements in exchange bias-based memory devices. Currently, major interest has resurged due to the recent observation of long-distance spin transport, current-induced switching, and THz emission. As a result, insulating transition metal oxides are now considered to be attractive candidates for active elements in future spintronic devices. Here, we discuss some of the most promising materials systems and highlight recent advances in reading and writing antiferromagnetic ordering. This article aims to provide an overview of the current research and potential future directions in the field of antiferromagnetic insulatronics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available