4.6 Article

Crossover from strong to weak exciton confinement in thickness-controlled epitaxial PbI2 thin films

Journal

APPLIED PHYSICS LETTERS
Volume 122, Issue 7, Pages -

Publisher

AIP Publishing
DOI: 10.1063/5.0138536

Keywords

-

Ask authors/readers for more resources

This study identifies the two distinct quantization effects of spatially confined excitons in a 2D semiconductor PbI2, the enhanced binding energy under strong confinement and the center-of-mass quantization under weak confinement. The transition between these effects is revealed in high-quality epitaxial thin films, providing important insights for the development of optoelectronic functionalities of 2D materials.
Spatially confined excitons undergo two distinct quantization effects depending on the confinement length, the enhanced binding energy under strong confinement, and the center-of-mass quantization under weak one. However, the transition between them has not been experimentally identified in two-dimensional (2D) materials due to the lack of thin films satisfying large-scale uniformity and atomic-level flatness in a wide thickness range. Here, we reveal the crossover in high-quality epitaxial thin films of a 2D semiconductor PbI2 grown by molecular beam epitaxy. The absorption spectra exhibit oscillatory structures manifesting the exciton center-of-mass quantization, and the quantization energies show an additional blue shift associated with the strong confinement effect below five-layer thickness (35 & ANGS;). The precise control of exciton quantum states will lead to the further development of optoelectronic functionalities of 2D materials. Published under an exclusive license by AIP Publishing.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available