4.6 Article

Highly efficient coherent detection of terahertz pulses based on ethanol

Journal

APPLIED PHYSICS LETTERS
Volume 122, Issue 6, Pages -

Publisher

AIP Publishing
DOI: 10.1063/5.0137707

Keywords

-

Ask authors/readers for more resources

A highly efficient terahertz (THz) coherent detection method using ethanol has been developed, overcoming the limitations of other schemes. Ethanol exhibits higher detection sensitivity than water, and the detection mode can be flexibly switched. The enhanced sensitivity is due to the properties of ethanol. This work improves the sensitivity of liquid-based coherent detection and provides insight into solute-solvent molecular interactions.
Water-based terahertz (THz) coherent detection scheme has been recently proposed, which overcomes the bandwidth limitation or high probe laser power demand in solid-/gas-based schemes. Here, we report a highly efficient THz coherent detection method using ethanol with superior performances under the mechanism of four-wave mixing. We systematically investigate the energy ratios and relative polarizations between the THz-induced second harmonic and control second harmonic (CSH) beams and reveal that ethanol always exhibits significantly higher detection sensitivity than water. The coherent, incoherent, or hybrid detection mode can be flexibly switched by changing the CSH beam polarization. The enhanced sensitivity derives from the much larger third-order nonlinear coefficient and lower ionization potential of ethanol. In addition, for the ethanol-water mixtures with various concentrations, the THz coherent detection signals can always be decomposed into the linear superposition of those from pure ethanol and neat water at the sub-picosecond timescale, indicating the synergistic contribution of ethanol and water molecules in the mixture during the detection process. This work provides a valid method to significantly improve the sensitivity of the liquid-based coherent detection scheme and a research perspective for exploring the solute-solvent molecular interactions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available