4.6 Article

Mechanical scanning probe lithography of perovskites for fabrication of high-Q planar polaritonic cavities

Journal

APPLIED PHYSICS LETTERS
Volume 122, Issue 14, Pages -

Publisher

AIP Publishing
DOI: 10.1063/5.0142570

Keywords

-

Ask authors/readers for more resources

This study demonstrates the use of affordable mechanical scanning probe lithography method to realize room-temperature exciton-polariton systems based on 2D perovskite. The control of lithography parameters allows for broad adjustment of the polariton dispersion and coupling to free space, opening up possibilities for on-chip all-optical active and nonlinear polaritonic devices.
Exciton-polaritons are unique quasiparticles with hybrid properties of an exciton and a photon, opening ways to realize ultrafast strongly nonlinear systems and inversion-free lasers based on Bose-Einstein polariton condensation. However, the real-world applications of polariton systems are still limited due to the temperature operation and costly fabrication techniques for both exciton materials and photon cavities. 2D perovskites represent one of the most prospective platforms for the realization of strong light-matter coupling since they support room-temperature exciton states with large oscillator strength and can simultaneously be used for fabrication of planar photon cavities with strong field localization due to the high refractive index of the material. In this work, we demonstrate the affordable mechanical scanning probe lithography method for research purposes and for the realization of room-temperature exciton-polariton systems based on 2D perovskite (PEA)(2)PbI4 with the Rabi splitting exceeding 200 meV. By the precise control of lithography parameters, we broadly adjust the excitonpolariton dispersion and, in particular, vary the radiative coupling of polaritonic modes to the free space. Our findings represent a versatile approach to fabrication of planar high-quality perovskite-based photonic cavities supporting the strong light-matter coupling regime for the development of on-chip all-optical active and nonlinear polaritonic devices.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available