4.7 Article

Sucrose-nonfermenting 1 kinase activates histone acetylase GCN5 to promote cellulase production in Trichoderma

Journal

APPLIED MICROBIOLOGY AND BIOTECHNOLOGY
Volume 107, Issue 15, Pages 4917-4930

Publisher

SPRINGER
DOI: 10.1007/s00253-023-12617-x

Keywords

Trichoderma viride; Cellulase production; SNF1 kinase; Histone acetylase GCN5; Epigenetic modification

Ask authors/readers for more resources

The study found that the SNF1-GCN5 cascade plays a crucial role in regulating cellulase production in Trichoderma viride by promoting altered histone acetylation. This finding offers a theoretical basis for optimizing T. viride in industrial cellulolytic enzyme production.
Trichoderma serves as the primary producer of cellulases and hemicellulases in industrial settings as it readily secretes a variety of cellulolytic enzymes. The protein kinase SNF1 (sucrose-nonfermenting 1) can enable cells to adapt to changes in carbon metabolism by phosphorylating key rate-limiting enzymes involved in the maintenance of energy homeostasis and carbon metabolism within cells. Histone acetylation is an important epigenetic regulatory mechanism that influences physiological and biochemical processes. GCN5 is a representative histone acetylase involved in promoter chromatin remodeling and associated transcriptional activation. Here, the TvSNF1 and TvGCN5 genes were identified in Trichoderma viride Tv-1511, which exhibits promising activity with respect to its ability to produce cellulolytic enzymes for biological transformation. The SNF1-mediated activation of the histone acetyltransferase GCN5 was herein found to promote cellulase production in T. viride Tv-1511 via facilitating changes in histone acetylation. These results demonstrated that cellulolytic enzyme activity and the expression of genes encoding cellulases and transcriptional activators were clearly enhanced in T. viride Tv-1511 mutants in which TvSNF1 and TvGCN5 were overexpressed, with concomitant changes in histone H3 acetylation levels associated with these genes. GCN5 was also found to be directly recruited to promoter regions to alter histone acetylation, while SNF1 functioned upstream as a transcriptional activator that promotes GCN5 upregulation at the mRNA and protein levels in the context of cellulase induction in T. viride Tv-1511. These findings underscore the important role that this SNF1-GCN5 cascade plays in regulating cellulase production in T. viride Tv-1511 by promoting altered histone acetylation, offering a theoretical basis for the optimization of T. viride in the context of industrial cellulolytic enzyme production.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available