4.8 Article

Atomically Fe-doped MoS2_x with Fe-Mo dual sites for efficient electrocatalytic NO reduction to NH3

Journal

APPLIED CATALYSIS B-ENVIRONMENTAL
Volume 324, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.apcatb.2022.122241

Keywords

ElectrocatalyticNO-to-NH3 conversion; Atomic doping; Vacancy engineering; Theoretical computations

Ask authors/readers for more resources

In this study, atomically Fe-doped and S-vacancy-rich MoS2 (Fe1/MoS2_x) is designed as a highly efficient electrocatalyst for NO-to-NH3 conversion. The Fe1/MoS2_x catalyst exhibits a maximum NH3-Faradaic efficiency of 82.5% and NH3 yield of 288.2 mu mol h_ 1 cm_ 2 at _ 0.6 V vs. RHE.
Electrocatalytic NO-to-NH3 conversion (NORR) provides an appealing route for both sustainable NH3 production and harmful NO abatement. Herein, we combine the strategies of atomic doping and vacancy engineering to design atomically Fe-doped and S-vacancy-rich MoS2 (Fe1/MoS2_x) as a highly efficient NORR catalyst, showing the maximum NH3-Faradaic efficiency of 82.5% and NH3 yield of 288.2 mu mol h_ 1 cm_ 2 at _ 0.6 V vs. RHE. Theoretical calculations unveil that Fe-Mo dual sites created on Fe1/MoS2_x can cooperatively activate NO and dissociate the N--O bond, boost the protonation energetics and simultaneously suppress the competing hydrogen evolution, resulting in the significantly expedited NORR activity and selectivity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available