4.8 Article

Unravelling the active sites and structure-activity relationship on Cu-ZnO-Al2O3 based catalysts for water-gas shift reaction

Journal

APPLIED CATALYSIS B-ENVIRONMENTAL
Volume 325, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.apcatb.2022.122320

Keywords

Water gas shift; Hydrogen production; Structure insensitivity; Cu content; Cu plus

Ask authors/readers for more resources

This study investigated the active sites and structure-sensitivity of Cu-ZnO-Al2O3 (CZA) catalysts in the water-gas shift (WGS) reaction. CZA catalysts with different Cu contents were synthesized using a homogeneous one-step coprecipitation method. The Cu content affected the number of active Cu sites and had a close relationship with WGS activity. Turnover frequency (TOF) values were independent of Cu dispersion, suggesting that the CZA catalyst is structure-insensitive in WGS. The ratio of surface Cu+ species also strongly influenced the activity of the CZA catalyst. TOF based on the total active Cu species remained constant, but CO conversion increased linearly with the number of surface Cu+ species.
Herein, we investigated the main active sites and structure-sensitivity of the water-gas shift (WGS) reaction over ternary Cu-ZnO-Al2O3 (CZA) catalysts. CZA catalysts with various Cu contents were synthesized by the ho-mogeneous one-step coprecipitation method. The Cu content mainly affected the number of active Cu sites and was closely related to the WGS activity. Turnover frequency (TOF) values were independent of Cu dispersion, indicating that the CZA catalyst is structure-insensitive in WGS. The ratio of surface Cu+ species also strongly influenced the activity of the CZA catalyst. TOF based on the total active Cu species showed a constant value, but the CO conversion was linearly increased with the number of surface Cu+ species.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available