4.7 Article

Relationship between milk urea content and important milk traits in Holstein cattle

Journal

ANIMAL
Volume 17, Issue 5, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.animal.2023.100767

Keywords

Dairy cattle; Genetic parameters; Indicator trait; Nitrogen emissions; Random regression model

Ask authors/readers for more resources

The study aimed to estimate the genetic parameters related to milk urea content (MU) and its relationship with other milk traits in dairy cows. The results showed moderate heritability estimates for MU, indicating its potential as a selectable trait for reducing nitrogen emissions. However, further research is needed to establish the relationship between MU as an indicator trait and the target trait of total individual nitrogen emissions.
Breeding cattle with low nitrogen emissions has been proposed as a countermeasure against eutrophica-tion due to dairy production. Milk urea content (MU) could potentially serve as a new readily measured indicator trait for nitrogen emissions by cows. Therefore, we estimated genetic parameters related to MU and its relationship with other milk traits. We analysed 4 178 735 milk samples collected between January 2008 and June 2019 from 261 866 German Holstein dairy cows during their first, second, and third lactations. Restricted maximum likelihood estimation was conducted using univariate and bivariate random regression sire models in WOMBAT. We obtained moderate average daily heritability estimates for the daily MU of 0.24 in first lactation cows, 0.23 in second lactation cows, and 0.21 in third lactation cows with average daily genetic SDs of 25.16 mg/kg, 24.93 mg/kg, and 23.75 mg/kg, respectively. Averaged over days in milk, the repeatability estimates were low at 0.41 in first, second, and third lacta-tion cows. A strong positive genetic correlation was found between MU and milk urea yield (MUY; 0.72 on average). In addition, 305-day heritabilities were estimated as 0.50, 0.52, and 0.50 in first, second, and third lactation cows, respectively, with genetic correlations of 0.94 or higher for MU in different lacta-tions. By contrast, the averaged estimates of the genetic correlations between MU and other milk traits were low (-0.07 to 0.15). Moderate heritability estimates clearly allow the possible selection for MU, and the near-zero estimates of genetic correlations indicate no risk of undesired correlated selection responses in other milk traits. However, a relationship still needs to be established between MU as an indicator trait and the target trait, defined as total individual nitrogen emissions. (c) 2023 Published by Elsevier B.V. on behalf of The Animal Consortium. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available