4.8 Article

High-Performance Organic Solar Cells Containing Pyrido[2,3-b]quinoxaline-Core-Based Small-Molecule Acceptors with Optimized Orbit Overlap Lengths and Molecular Packing

Related references

Note: Only part of the references are listed.
Article Chemistry, Multidisciplinary

Hybrid Cycloalkyl-Alkyl Chain-Based Symmetric/Asymmetric Acceptors with Optimized Crystal Packing and Interfacial Exciton Properties for Efficient Organic Solar Cells

Cong Xiao et al.

Summary: The effects of hybrid cycloalkyl-alkyl side chains on the single-crystal structures, optoelectronic and energetic properties of electron acceptors were investigated. Symmetric/asymmetric acceptors with 10-cyclohexyldecyl side chains were designed, synthesized, and compared. The introduction of the cyclohexyldecyl side chains resulted in decreased optical bandgap, deeper energy level, and closer packing of acceptor molecules, leading to improved performance of organic solar cells.

ADVANCED SCIENCE (2023)

Article Chemistry, Physical

CF3-Terminated Side Chain Enables Efficiencies Surpassing 18.2% and 16.1% in Small- and Large-Scale Manufacturing of Solar Cells

Yongjoon Cho et al.

Summary: This research introduces a new side chain into a non-fullerene acceptor, and both experimental and theoretical studies confirm the improved optoelectronic, morphological, and photovoltaic properties, as well as the enhanced crystalline nature and mobility, of the acceptor with this new side chain. Compared to other acceptors, the organic solar cells based on this new side chain achieve higher power conversion efficiency and stability.

ACS ENERGY LETTERS (2023)

Article Chemistry, Multidisciplinary

Unveiling the Morphological and Physical Mechanism of Burn-in Loss Alleviation by Ternary Matrix Toward Stable and Efficient All-Polymer Solar Cells

Ruijie Ma et al.

Summary: All-polymer solar cells (All-PSCs) are considered the most promising candidate in achieving both efficient and stable organic photovoltaic devices. This study builds a ternary matrix with optimized morphology, improved film ductility, boosted efficiency, and better operational stability than its parental binary counterparts.

ADVANCED MATERIALS (2023)

Article Chemistry, Multidisciplinary

Deciphering the Role of Side-Chain Engineering and Solvent Vapor Annealing for Binary All-Small-Molecule Organic Solar Cells

Tongle Xu et al.

Summary: The fibrous interpenetrating network structure morphology is crucial for achieving high power conversion efficiency in all-small-molecule organic solar cells. This study demonstrates that rational molecular design and suitable posttreatment can significantly improve the efficiency of ASM-OSCs.

ADVANCED FUNCTIONAL MATERIALS (2023)

Article Multidisciplinary Sciences

19.31% binary organic solar cell and low non-radiative recombination enabled by non-monotonic intermediate state transition

Jiehao Fu et al.

Summary: The authors achieved the suppression of non-radiative recombination loss and improved the performance of organic solar cells by regulating the self-organization of bulk-heterojunction in a non-monotonic manner. The efficiency of the organic solar cells reached over 19% with a low non-radiative recombination loss of 0.168 eV.

NATURE COMMUNICATIONS (2023)

Article Chemistry, Multidisciplinary

A Two-in-One Annealing Enables Dopant Free Block Copolymer Based Organic Solar Cells with over 16% Efficiency

Shangfei Yao et al.

Summary: The organic solar cells (OSCs) based on block copolymer systems have the potential to achieve the optimal balance of power conversion efficiency (PCE) and stability, but the PCE of these devices is still low. To improve the efficiency, controlling the thin-film morphology is the key engineering, which can be achieved through precursor optimization and post treatments. In this study, a novel two-in-one annealing tactic is developed, which results in limited phase separation and well-connected domain distribution, leading to a record-breaking PCE of 16.08%. Additionally, a comprehensive study on different annealing methods is conducted, providing in-depth understanding with the help of various characterizations.

CHINESE JOURNAL OF CHEMISTRY (2023)

Article Polymer Science

A Simple Building Block with Noncovalently Conformational Locks towards Constructing Low-Cost and High-Performance Nonfused Ring Electron Acceptors

Xiao-Bin Gu et al.

Summary: This work presents the design and synthesis of a simple building block (POBT) with noncovalently conformational locks (NoCLs) for developing high-performance nonfused ring electron acceptors (NFREAs). The introduction of NoCLs enhances the molecular rigidity of the NFREAs and leads to improved power conversion efficiency in the photovoltaic device based on TT-POBT.

CHINESE JOURNAL OF POLYMER SCIENCE (2023)

Article Chemistry, Multidisciplinary

Multifunctional all-polymer photovoltaic blend with simultaneously improved efficiency (18.04%), stability and mechanical durability

Tao Liu et al.

Summary: This study demonstrates that the three key merits of an all-polymer blend, PM6:PY-IT, can be simultaneously maximized by introducing a polymerized fullerene derivative, PPCBMB. The addition of this polymerized fullerene material improves the power conversion efficiency, device stability, and film ductility of the blend system. Morphology and device physics analyses show that the optimal ternary system possesses well-maintained molecular packing and crystallinity, which contribute to favorable charge transport and improved charge generation and ductility.

AGGREGATE (2023)

Article Chemistry, Multidisciplinary

Realizing 19.05% Efficiency Polymer Solar Cells by Progressively Improving Charge Extraction and Suppressing Charge Recombination

Kaien Chong et al.

Summary: This work demonstrates highly efficient polymer solar cells by improving charge extraction and suppressing charge recombination through side-chain engineering, adopting ternary blends, and introducing volatilizable solid additives. The optimized molecular structure and blend morphology lead to improved fill factor and power conversion efficiency.

ADVANCED MATERIALS (2022)

Article Nanoscience & Nanotechnology

Dilution effect for highly efficient multiple-component organic solar cells

Lijian Zuo et al.

Summary: Research shows that the "dilution effect" mechanism in multi-component organic solar cells can enhance luminescence quantum efficiency and open-circuit voltage, achieving high energy conversion efficiency.

NATURE NANOTECHNOLOGY (2022)

Review Chemistry, Multidisciplinary

Recent progress in organic solar cells (Part I material science)

Yahui Liu et al.

Summary: In recent years, organic solar cells (OSCs) have made significant progress with power conversion efficiencies (PCEs) over 18%, showing promising practical applications. Key research focuses in the OSC field include development in material science and interface materials. The article systematically summarizes the recent progress in these areas and discusses current challenges and future developments.

SCIENCE CHINA-CHEMISTRY (2022)

Article Chemistry, Multidisciplinary

Ternary-Assisted Sequential Solution Deposition Enables Efficient All-Polymer Solar Cells with Tailored Vertical-Phase Distribution

Feng-Zhe Cui et al.

Summary: This study adopts a ternary-assisted sequential solution deposition strategy to regulate the vertical compositional profile of all-polymer solar cells (all-PSCs). A favorable acceptor(donor)-enriched phase near the cathode(anode) can be obtained by this strategy, resulting in enhanced exciton yield and carrier density. Non-geminate recombination is suppressed by improving the exciton diffusion length. This study demonstrates the success of the ternary-assisted strategy in reorganizing the vertical-phase distribution, providing a feasible route for efficient all-polymer photovoltaics.

ADVANCED FUNCTIONAL MATERIALS (2022)

Article Chemistry, Multidisciplinary

16.52% Efficiency All-Polymer Solar Cells with High Tolerance of the Photoactive Layer Thickness

Wenqing Zhang et al.

Summary: In this study, a third polymer donor, PTQ10, was introduced to finely tune the energy-level matching and microscopic morphology of the polymer blend photoactive layer in all-polymer solar cells (all-PSCs). The addition of PTQ10 improved the charge separation and transport efficiency, resulting in a high power conversion efficiency (PCE) of 16.52%. Furthermore, the all-PSCs exhibited a high tolerance of the photoactive layer thickness, achieving high PCEs of 15.27% and 13.91% at thick photoactive layer thicknesses, which are the highest reported for all-PSCs.

ADVANCED MATERIALS (2022)

Article Chemistry, Multidisciplinary

Single-Junction Organic Solar Cells with 19.17% Efficiency Enabled by Introducing One Asymmetric Guest Acceptor

Rui Sun et al.

Summary: The ternary strategy is an effective approach to achieve high-efficiency OSCs, but the nonradiative voltage loss limits further efficiency improvements. By incorporating an asymmetric guest acceptor BTP-2F2Cl, the OSCs show improved photoluminescence quantum yield, exciton diffusion length, and absorption spectrum, leading to enhanced power conversion efficiency.

ADVANCED MATERIALS (2022)

Article Chemistry, Physical

Single-junction organic solar cells with over 19% efficiency enabled by a refined double-fibril network morphology

Lei Zhu et al.

Summary: Morphological control of donor and acceptor domains is crucial for efficient organic photovoltaics, and this study demonstrates a double-fibril network strategy to achieve a high power conversion efficiency of 19.3%.

NATURE MATERIALS (2022)

Article Chemistry, Multidisciplinary

Over 16% efficiency all-polymer solar cells by sequential deposition

Bangbang Li et al.

Summary: All-polymer solar cells (all-PSCs) have excellent mechanical robustness and performance stability, but their power conversion efficiency (PCE) still lags behind that of organic solar cells (OSCs) based on non-fullerene small molecule acceptors. In this study, highly efficient all-PSCs were achieved via sequential deposition (SD) with donor and acceptor layers coated sequentially to optimize the film microstructure.

SCIENCE CHINA-CHEMISTRY (2022)

Article Multidisciplinary Sciences

Vertically optimized phase separation with improved exciton diffusion enables efficient organic solar cells with thick active layers

Yunhao Cai et al.

Summary: This study demonstrates the fabrication of efficient thick-film organic solar cells by optimizing the structure of the active layer. The use of one polymer donor and two non-fullerene acceptors in the mixed phase enhances the exciton diffusion length, and the layer by layer approach optimizes the vertical phase separation, resulting in high photovoltaic efficiency.

NATURE COMMUNICATIONS (2022)

Article Chemistry, Physical

Emerging Strategies toward Mechanically Robust Organic Photovoltaics: Focus on Active Layer

Cenqi Yan et al.

Summary: The mechanical stability of organic photovoltaics (OPVs) is crucial for their applications in various fields. This article analyzes the working scenarios of flexible OPVs and strategies to improve their mechanical stability. Recent achievements in enhancing the mechanical robustness of active layers are summarized, followed by an outlook on the future of this field.

ADVANCED ENERGY MATERIALS (2022)

Article Multidisciplinary Sciences

Heteroheptacene-based acceptors with thieno[3,2-b]pyrrole yield high-performance polymer solar cells

Zhenghui Luo et al.

Summary: Rationally utilizing and developing synthetic units is crucial for designing high-performance non-fullerene small-molecule acceptors. In this study, four acceptors were developed based on a thieno[3,2-b]pyrrole synthetic unit, showing improved photovoltaic properties and energy utilization compared to the standard acceptor IT-4Cl. The ThPy3-based device achieved the highest PCE and excellent FF, while the ThPy4-based device achieved the lowest energy loss and smallest optical band gap.

NATIONAL SCIENCE REVIEW (2022)

Review Chemistry, Multidisciplinary

Recent Progress of Y6-Derived Asymmetric Fused Ring Electron Acceptors

Youdi Zhang et al.

Summary: This paper reviews the recent progress of Y6-derived asymmetric conjugated molecules, with a focus on the relationship between molecular structure, optoelectronic properties, and device performance. It provides a reference for the future design direction and challenges of this type of photovoltaic materials.

ADVANCED FUNCTIONAL MATERIALS (2022)

Article Chemistry, Multidisciplinary

Achieving 19% Power Conversion Efficiency in Planar-Mixed Heterojunction Organic Solar Cells Using a Pseudosymmetric Electron Acceptor

Wei Gao et al.

Summary: By adopting the asymmetric selenium substitution strategy and using a pseudosymmetric electron acceptor, the power conversion efficiency of planar-mixed heterojunction organic solar cells (PMHJ OSCs) can be significantly improved. The increased dielectric constant and improved dimer packing lead to lower exciton binding energy, more efficient exciton dissociation, and reduced radiative recombination loss. These findings provide an effective way to develop highly efficient acceptor materials for OSCs.

ADVANCED MATERIALS (2022)

Article Chemistry, Multidisciplinary

Binary Organic Solar Cells Breaking 19% via Manipulating the Vertical Component Distribution

Yanan Wei et al.

Summary: The variation of the vertical component distribution has a significant impact on the photovoltaic performance of organic solar cells. This study demonstrates that sequential deposition of materials can improve the efficiency of solar cells.

ADVANCED MATERIALS (2022)

Article Chemistry, Multidisciplinary

Central Unit Fluorination of Non-Fullerene Acceptors Enables Highly Efficient Organic Solar Cells with Over 18 % Efficiency

Hongbin Chen et al.

Summary: Halogenation of the central units of state-of-the-art Y-series acceptors has been proven to significantly improve the power conversion efficiencies of organic solar cells. In this study, two acceptors, CH6 and CH4, featuring a conjugation-extended phenazine central unit with and without fluorination, were synthesized. The fluorinated CH6 showed enhanced molecular interactions and crystallinity, superior fibrillar network morphology, and improved charge generation and transport, resulting in a higher power conversion efficiency compared to the non-fluorinated CH4.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2022)

Review Chemistry, Multidisciplinary

Renewed Prospects for Organic Photovoltaics

Guichuan Zhang et al.

Summary: Organic photovoltaics (OPVs) have undergone three stages of development, including optimizing bulk heterojunctions, improving donor-acceptor match, and developing non-fullerene acceptors (NFAs). NFAs have resulted in higher power conversion efficiencies (PCEs) surpassing 15% due to reduced energy losses and increased quantum efficiencies. The review provides an update on recent progress in OPV technology, including novel NFAs and donors, understanding structure-property relationships, and commercialization challenges.

CHEMICAL REVIEWS (2022)

Article Chemistry, Physical

High-Efficiency Ternary Organic Solar Cells with a Good Figure-of-Merit Enabled by Two Low-Cost Donor Polymers

Ruijie Ma et al.

Summary: In this study, we fabricated ternary organic solar cells with high efficiency and decent performance by combining two donor polymers using a simple synthesis method. Our results indicate that the optimal morphology of the ternary blend is achieved through the coupling and competition between PTQ10 and PTVT-T, leading to efficient charge transport and suppressed bimolecular recombination. Furthermore, the optimized solvent-vapor-assisted casting method improved the efficiency of the optimal system to 19.11%.

ACS ENERGY LETTERS (2022)

Review Chemistry, Multidisciplinary

The principles, design and applications of fused-ring electron acceptors

Jiayu Wang et al.

Summary: Fused-ring electron acceptors (FREAs) with high tunability and excellent properties have revolutionized the field of organic solar cells. FREAs have achieved remarkable efficiencies of over 20% and potential operational lifetimes of up to 10 years.

NATURE REVIEWS CHEMISTRY (2022)

Article Chemistry, Physical

Aperiodic band-pass electrode enables record-performance transparent organic photovoltaics

Xin Liu et al.

Summary: TOPVs present the potential for building integration windows, with a critical challenge being the trade-off between AVT and PCE. By integrating an ABPF, a superior transparent rear electrode was designed and constructed, showing significant enhancements in AVT and LUE compared to counterparts without ABPF.

JOULE (2022)

Article Chemistry, Multidisciplinary

Multiphase Morphology with Enhanced Carrier Lifetime via Quaternary Strategy Enables High-Efficiency, Thick-Film, and Large-Area Organic Photovoltaics

Lingling Zhan et al.

Summary: The study demonstrates the potential of using a quaternary strategy to improve the efficiency and practical application of organic photovoltaic (OPV) devices. By optimizing the intermixing-phase size, thick-film and large-area devices are constructed, achieving a high power conversion efficiency (PCE).

ADVANCED MATERIALS (2022)

Article Chemistry, Multidisciplinary

Regioisomer-Free Difluoro-Monochloro Terminal-based Hexa-Halogenated Acceptor with Optimized Crystal Packing for Efficient Binary Organic Solar Cells

Lu Yan et al.

Summary: In this study, we synthesized new small molecular acceptors with different hetero-halogenated terminals, and found that the difluoro-monochloro hetero-terminal can achieve a more compact molecular packing and better photovoltaic performance.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2022)

Article Multidisciplinary Sciences

Importance of structural hinderance in performance-stability equilibrium of organic photovoltaics

Baobing Fan et al.

Summary: The researchers developed a class of non-fullerene acceptors that can achieve efficiency as high as 18.3% and good stability when processed in xylene. The study highlights the importance of side-group steric hinderance of acceptors in achieving high-performance, stable, and eco-friendly organic photovoltaics.

NATURE COMMUNICATIONS (2022)

Review Chemistry, Multidisciplinary

Recent progress in low-cost noncovalently fused-ring electron acceptors for organic solar cells

Qingqing Bai et al.

Summary: In recent years, the power conversion efficiencies of organic solar cells (OSCs) have significantly improved due to the development of noncovalently fused-ring electron acceptors (NFREAs). Compared to traditional fused-ring electron acceptors (FREAs), NFREAs have the advantages of simple structure, facile synthesis, high yield, and low cost, making them promising for commercial applications.

AGGREGATE (2022)

Article Chemistry, Multidisciplinary

Asymmetric side-chain substitution enables a 3D network acceptor with hydrogen bond assisted crystal packing and enhanced electronic coupling for efficient organic solar cells

Zhenghui Luo et al.

Summary: This research investigates the impact of side chain modification on the efficiency of organic solar cells. The study demonstrates that asymmetric side-chain substitution enhances π-π stacking and increases electronic couplings, thereby promoting photovoltaic efficiency through improved charge mobility and molecular packing.

ENERGY & ENVIRONMENTAL SCIENCE (2022)

Article Chemistry, Multidisciplinary

Peripheral halogenation engineering controls molecular stacking to enable highly efficient organic solar cells

Yalu Zou et al.

Summary: The peripheral halogenation in non-fullerene acceptors affects the molecular stackings and device performances in organic solar cells. The study demonstrates that chloro-substitutions lead to unique intermolecular packing modes and improved device performance. Furthermore, the slight modification of peripheral halogens can boost the power conversion efficiencies of high-performance organic solar cells through delicate molecular stacking control.

ENERGY & ENVIRONMENTAL SCIENCE (2022)

Article Chemistry, Multidisciplinary

Identifying structure-absorption relationships and predicting absorption strength of non-fullerene acceptors for organic photovoltaics

Jun Yan et al.

Summary: This study investigates the absorption strength of non-fullerene acceptors (NFAs) by building a database of time-dependent density functional theory (TDDFT) calculations. It identifies important structural features correlated with high absorption strength in NFAs and proposes a predictive machine-learning model with lower computational cost.

ENERGY & ENVIRONMENTAL SCIENCE (2022)

Article Chemistry, Multidisciplinary

Manipulating the D:A interfacial energetics and intermolecular packing for 19.2% efficiency organic photovoltaics

Chengliang He et al.

Summary: Manipulating the donor:acceptor energetics is crucial for achieving balanced charge separation and recombination in organic solar cells (OSCs). In this study, a non-fullerene electron acceptor, BTP-H2, was designed and synthesized to pair with the polymer donor PM6, showing strong intermolecular interaction and near-zero highest occupied molecular orbital (HOMO) offset. The results demonstrated efficient charge separation and optimized energy conversion, leading to high-performance OSCs with a power conversion efficiency (PCE) of 18.5% and a peak photon-to-electron response of approximately 90%.

ENERGY & ENVIRONMENTAL SCIENCE (2022)

Article Chemistry, Multidisciplinary

In situ and ex situ investigations on ternary strategy and co-solvent effects towards high-efficiency organic solar cells

Ruijie Ma et al.

Summary: This research focuses on the influence of morphology regulation strategies, such as ternary strategy and cosolvent engineering, on the performance of organic solar cells (OSCs). The addition of BN-T as the third component had different effects on the morphology evolution of different systems. This study provides an insightful understanding of the morphology evolution in ternary OSCs assisted by a high-boiling solvent additive via in situ investigation techniques.

ENERGY & ENVIRONMENTAL SCIENCE (2022)

Article Chemistry, Multidisciplinary

The effect of alkyl substitution position of thienyl outer side chains on photovoltaic performance of A-DA′D-A type acceptors

Xiaolei Kong et al.

Summary: The side chain configuration of organic small molecule acceptors (SMAs) has been found to significantly impact their intermolecular interaction and aggregation morphology. In this study, two isomeric A-DA 'D-A type SMAs with thienyl outer side chains were designed and synthesized to investigate the effects of thienyl conjugated outer side chains and the alkyl substitution position on SMA properties. It was found that the beta-substituted m-TEH SMA exhibited stronger intermolecular interaction and higher electron mobility compared to the alpha-substituted o-TEH SMA. Furthermore, the m-TEH blend film with the PBQ6 polymer donor showed more suitable phase separation, enhanced molecular packing, and improved hole and electron mobilities compared to the o-TEH blend film. Organic solar cells based on PBQ6:m-TEH achieved a significantly higher power conversion efficiency (PCE) of 18.51% compared to PBQ6:o-TEH based solar cells. This study demonstrates that m-TEH with 2-ethylhexyl beta-substituted thienyl outer side chains is an excellent high-performance SMA for organic solar cells.

ENERGY & ENVIRONMENTAL SCIENCE (2022)

Article Chemistry, Physical

Over 17% Efficiency Binary Organic Solar Cells with Photoresponses Reaching 1000 nm Enabled by Selenophene-Fused Nonfullerene Acceptors

Feng Qi et al.

Summary: Novel NFAs were designed with enhanced absorption edge and high J(sc), leading to efficient organic solar cells with improved power conversion efficiency.

ACS ENERGY LETTERS (2021)

Article Energy & Fuels

Non-fullerene acceptors with branched side chains and improved molecular packing to exceed 18% efficiency in organic solar cells

Chao Li et al.

Summary: The molecular design of acceptor and donor molecules has significantly advanced organic photovoltaics. By introducing branched alkyl chains in non-fullerene acceptors, favorable morphology in the active layer can be achieved, leading to a certified device efficiency of 17.9%. This modification can completely alter the molecular packing behavior of non-fullerene acceptors, resulting in improved structural order and charge transport in thin films.

NATURE ENERGY (2021)

Article Chemistry, Multidisciplinary

Single-Junction Organic Photovoltaic Cell with 19% Efficiency

Yong Cui et al.

Summary: By combining material design and ternary blending strategy, a maximum power conversion efficiency of 19.0% is achieved in single-junction OPV cells. Optimized active layer structure significantly improves the photovoltaic parameters, enhancing the performance and PCE values of the cells.

ADVANCED MATERIALS (2021)

Article Multidisciplinary Sciences

Graded bulk-heterojunction enables 17% binary organic solar cells via nonhalogenated open air coating

Ying Zhang et al.

Summary: The study demonstrates an effective graded bulk-heterojunction (G-BHJ) strategy using nonhalogenated solvent sequential deposition for nonfullerene acceptor (NFA) organic solar cells, achieving outstanding power conversion efficiency (PCE) of 17.48%. Advanced techniques such as depth-profiling X-ray photoelectron spectroscopy (DP-XPS) and angle-dependent grazing incidence X-ray diffraction (GI-XRD) enable visualization of morphology and crystallinity gradient distributions, leading to high PCEs of thick OSCs. The use of nonhalogenated solvent in G-BHJ OSC via open-air blade coating achieves a record 16.77% PCE by suppressing unfavorable phase separation in bulk-heterojunction. Overall, the G-BHJ strategy shows great promise for highly efficient, eco-friendly, and scalable organic solar cells.

NATURE COMMUNICATIONS (2021)

Article Chemistry, Physical

Marcus Hole Transfer Governs Charge Generation and Device Operation in Nonfullerene Organic Solar Cells

Guanqing Zhou et al.

Summary: This study investigates the relationship between hole transfer (HT) rate and driving force in a large group of donor/NFA blends, demonstrating that the HT rate increases significantly with increasing driving force. The study also highlights a critical threshold for high HT efficiency when the driving force exceeds 50 meV. Additionally, the correlation between driving force, morphology, and device performance is analyzed, providing insights into manipulating internal electronic processes to optimize device performance.

ACS ENERGY LETTERS (2021)

Article Chemistry, Multidisciplinary

15.8% efficiency binary all-small-molecule organic solar cells enabled by a selenophene substituted sematic liquid crystalline donor

Tongle Xu et al.

Summary: The study investigates the effect of selenophene substitution on the morphology and photovoltaic performance of liquid crystalline donors, and finds that the selenide donor exhibits higher intramolecular interaction and a more favored morphology, leading to outstanding power conversion efficiency up to 15.8%. This highlights the superiority of selenophene in constructing efficient small molecule liquid crystalline donors.

ENERGY & ENVIRONMENTAL SCIENCE (2021)

Review Chemistry, Multidisciplinary

Recent Progress in Chlorinated Organic Photovoltaic Materials

Huifeng Yao et al.

ACCOUNTS OF CHEMICAL RESEARCH (2020)

Article Chemistry, Multidisciplinary

Asymmetric Electron Acceptors for High-Efficiency and Low-Energy-Loss Organic Photovoltaics

Shuixing Li et al.

ADVANCED MATERIALS (2020)

Article Chemistry, Multidisciplinary

Single-Junction Organic Photovoltaic Cells with Approaching 18% Efficiency

Yong Cui et al.

ADVANCED MATERIALS (2020)

Article Multidisciplinary Sciences

Organic photovoltaic cell with 17% efficiency and superior processability

Yong Cui et al.

NATIONAL SCIENCE REVIEW (2020)

Article Chemistry, Multidisciplinary

Selenium Heterocyclic Electron Acceptor with Small Urbach Energy for As-Cast High-Performance Organic Solar Cells

Zhenzhen Zhang et al.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2020)

Review Chemistry, Multidisciplinary

Acceptor-donor-acceptor type molecules for high performance organic photovoltaics - chemistry and mechanism

Xiangjian Wan et al.

CHEMICAL SOCIETY REVIEWS (2020)

Review Chemistry, Multidisciplinary

Recent Advances, Design Guidelines, and Prospects of All-Polymer Solar Cells

Changyeon Lee et al.

CHEMICAL REVIEWS (2019)

Review Chemistry, Physical

Organic solar cells based on non-fullerene acceptors

Jianhui Hou et al.

NATURE MATERIALS (2018)

Article Chemistry, Multidisciplinary

An Electron Acceptor Challenging Fullerenes for Efficient Polymer Solar Cells

Yuze Lin et al.

ADVANCED MATERIALS (2015)