4.8 Article

Amplified Chirality Transfer to Aromatic Molecules through Non-specific Inclusion by Amorphous, Hyperbranched Poly(fluorenevinylene) Derivatives

Journal

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/anie.202305747

Keywords

Chirality; Circular Dichroism; Circularly Polarized Light; Polymers; Supramolecular Chemistry

Ask authors/readers for more resources

Optically active polymers with neomenthyl and pentyl groups were used as host polymers to efficiently include different chirality acceptors. Chirality transfer was more efficient with higher-molar-mass and hyperbranched polymers. Included molecules may exhibit ordered intermolecular arrangement and exhibit efficient circularly polarized luminescence.
Optically active, hyperbranched, poly(fluorene-2,4,7-triylethene-1,2-diyl) [poly(fluorenevinylene)] derivatives bearing a neomenthyl group and a pentyl group at the 9-position of the fluorene backbone at various ratios acted as a chirality donor (host polymers) efficiently included naphthalene, anthracene, pyrene, 9-phenylanthracene, and 9,10-diphenyanthracene as a chirality acceptor (guest molecules) in their interior space in film as well as in solution, with the guest molecules exhibiting intense circular dichroism through chirality transfer with chirality amplification. The efficiency of the chirality transfer was much higher with higher-molar-mass polymers than lower-molar-mass ones as well as with hyperbranched polymers compared to the analogous linear ones. The hyperbranched polymers include the small molecules in their complex structure without any specific interactions at various stoichiometries. The included molecules may have ordered intermolecular arrangement that may be somewhat similar to those of liquid crystals. Naphthalene, anthracene, and pyrene included in the polymer exhibited efficient circularly polarized luminescence, where the chirality was remarkably amplified in excited states, and anthracene exhibited especially high anisotropies in the emission on the order of 10(-2).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available