4.8 Article

Glutathione-Induced In Situ Michael Addition between Nanoparticles for Pyroptosis and Immunotherapy

Journal

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
Volume 62, Issue 20, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/anie.202301866

Keywords

Cancer Therapy; Immunotherapy; Nanotechnology; Polyphenols; Pyroptosis

Ask authors/readers for more resources

By introducing competition and cooperation into cancer therapy, researchers have developed biomineralized nanoparticles that disrupt the cooperation between cancer cells and their microenvironment, leading to versatile inhibition of different types of tumors.
Most tumor treatments will fail when ignoring competition and cooperation between each cancer cell and its microenvironment. Inspired by game theory, therapeutic agents can be introduced to compete for intracellular molecules to disrupt the cooperation between molecules and cells. Biomineralized oxidized (-)-epigallocatechin-3-o-gallate (EGCG)-molybdenum ion coordination nanoparticles were prepared for disrupting redox equilibria and simultaneously reacting with intracellular GSH in a Michael addition to form large aggregates that can mechanically disrupt endosomal and plasma membranes, stimulating pyroptosis and anti-tumor immunological responses for versatile inhibition of different types of tumors. This design disrupts the cooperation between molecules and between cancer and immune cells, achieving an optimal payoff in competition and cooperation in cancer therapy.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available