4.8 Article

Water in Carbon Nanotubes: The Peculiar Hydrogen Bond Network Revealed by Infrared Spectroscopy

Journal

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
Volume 138, Issue 33, Pages 10437-10443

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jacs.6b02635

Keywords

-

Funding

  1. SOLEIL
  2. French Research National Agency [ANR-10-LABX-0035: Labex NanoSaclay]

Ask authors/readers for more resources

A groundbreaking discovery in nanofluidics was the observation of the tremendously enhanced water permeability of carbon nanotubes, those iconic objects of nanosciences. The origin of this phenomenon is still a subject of controversy. One of the proposed explanations involves dramatic modifications of the H-bond network of nano confined water with respect to that of bulk water. Infrared spectroscopy is an ideal technique to follow modifications of this network through the inter- and intramolecular bonds of water molecules. Here we report the first infrared study of water uptake at controlled vapor pressure in single walled carbon nanotubes with diameters ranging from 0.7 to 2.1 nm. It reveals a predominant contribution of loose H bonds even for fully hydrated states, irrespective of the nanotube size. Our results show that, while the dominating loosely bond signature is attributed to a one-dimensional chain structure for small diameter nanotubes, this feature also results from a water layer with free OH (dangling) bonds facing the nanotube wall for larger diameter nanotubes. These experimental findings provide a solid reference for further modeling of water behavior in hydrophobic nanochannels.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available