4.8 Article

X-ray Spectroscopic Characterization of Co(IV) and Metal-Metal Interactions in Co4O4: Electronic Structure Contributions to the Formation of High-Valent States Relevant to the Oxygen Evolution Reaction

Journal

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
Volume 138, Issue 34, Pages 11017-11030

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jacs.6b04663

Keywords

-

Funding

  1. Division of Chemical Sciences, Biosciences, Office of Basic Energy Science (OBES), DOE [DE-AC02-06CH11357]
  2. U.S. DOE Office of Science [DE-SC0009758]
  3. Joseph J. Katz Postdoctoral Fellowship at Argonne National Laboratory (ANL)
  4. National Science Foundation's Graduate Research Fellowship
  5. U.S. Department of Energy (DOE) [DE-SC0009758] Funding Source: U.S. Department of Energy (DOE)

Ask authors/readers for more resources

The formation of high-valent states is a key factor in making highly active transition-metal-based catalysts of the oxygen evolution reaction (OER). These high oxidation states will be strongly influenced by the local geometric and electronic structures of the metal ion, which are difficult to study due to spectroscopically active and complex backgrounds, short lifetimes, and limited concentrations. Here, we use a wide range of complementary Xray spectroscopies coupled to DFT calculations to study Co(III)(4)O-4 cubanes and their first oxidized derivatives, which provide insight into the high-valent Co(IV) centers responsible for the activity of molecular and heterogeneous OER catalysts. The combination of X-ray absorption and 1s3p resonant inelastic X-ray scattering (K beta RIXS) allows Co(IV) to be isolated and studied against a spectroscopically active Co(III) background. Co K- and L-edge X-ray absorption data allow for a detailed characterization of the 3d-manifold of effectively localized Co(IV) centers and provide a direct handle on the tag-based redox-active molecular orbital. K beta RIXS is also shown to provide a powerful probe of Co(IV), and specific spectral features are sensitive to the degree of oxo-mediated metal metal coupling across Co4O4. Guided by the data, calculations show that electron hole delocalization can actually oppose Co(IV) formation. Computational extension of Co4O4 to CoM3O4 structures (M = redox-inactive metal) defines electronic structure contributions to Co(IV) formation. Redox activity is shown to be linearly related to covalency, and M(III) oxo inductive effects on Co(IV) oxo bonding can tune the covalency of high-valent sites over a large range and thereby tune E-0 over hundreds of millivolts. Additionally, redox-inactive metal substitution can also switch the ground state and modify metal metal and antibonding interactions across the cluster.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available