4.8 Article

Near Infrared Light-Powered Janus Mesoporous Silica Nanoparticle Motors

Journal

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
Volume 138, Issue 20, Pages 6492-6497

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jacs.6b00902

Keywords

-

Funding

  1. National Nature Science Foundation of China [21573053, 21273053]
  2. National Key Foundation for Exploring Scientific Instrument [2013YQ16055108]
  3. State Key Laboratory of Robotics and System (HIT)

Ask authors/readers for more resources

We describe fuel-free, near-infrared (NIR)-driven Janus mesoporous silica nanoparticle motors (JMSNMs) with diameters of 50, 80, and 120 nm. The Janus structure of the JMSNMs is generated by vacuum sputtering of a 10 nm Au layer on one side of the MSNMs. Upon exposure to an NIR laser, a localized photothermal effect on the Au half-shells results in the formation of thermal gradients across the JMSNMs; thus, the generated self-thermophoresis can actively drive the nanomotors to move at an ultrafast speed, for instance, up to 950 body lengths/s for 50 nm JMSNMs under an NIR laser power of 70.3 W/cm(2). The reversible on/off motion of the JMSNMs and their directed movement along the light gradient can be conveniently modulated by a remote NIR laser. Moreover, dynamic light scattering measurements are performed to investigate the coexisting translational and rotational motion of the JMSNMs in the presence of both self-thermophoretic forces and strong Brownian forces. 'These NIR-powered nanomotors demonstrate a novel strategy for overcoming the necessity of chemical fuels and exhibit a significant improvement in the maneuverability of nanomotors while providing potential cargo transportation in a biofriendly manner.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available