4.8 Article

Mechanism-Based Development of a Low-Potential, Soluble, and Cyclable Multielectron Anolyte for Nonaqueous Redox Flow Batteries

Journal

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
Volume 138, Issue 47, Pages 15378-15384

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jacs.6b07638

Keywords

-

Funding

  1. Joint Center for Energy Storage Research (JCESR) from the Department of Energy, Energy Innovation Hub
  2. National Science Foundation, Sustainable Energy Pathways (SEP) [NSF-1230236]
  3. National Science Foundation [DGE 1256260, CHE-0840456]
  4. Direct For Mathematical & Physical Scien
  5. Division Of Chemistry [1230236] Funding Source: National Science Foundation

Ask authors/readers for more resources

The development of nonaqueous redox flow a batteries (NRFBs) has been impeded by a lack of electroactive compounds (anolytes and catholytes) with the necessary combination of (1) redox potentials that exceed the potential limits of water, (2) high solubility in nonaqueous media, and (3) high stability toward electrochemical cycling. In addition, ideal materials would maintain all three of these properties over multiple electron transfer events, thereby providing a proportional increase in storage capacity. This paper describes the mechanism-based design of a new class of metal coordination complexes (MCCs) as anolytes for NRFBs. The tridentate bipyridylimino isoindoline (BPI) ligands of these complexes were designed to enable multielectron redox events. These molecules were optimized using a combination of systematic variation of the BPI ligand and the metal center along with mechanistic investigations of the decomposition pathways that occur during electrochemical cycling. Ultimately, these studies led to the identification of nickel BPI complexes that could undergo stable charge-discharge cycling (<5% capacity loss over 200 cycles) as well as a derivative that possesses the previously unprecedented combination of high solubility (>700 mM in CH3CN), multiple electron transfers at low redox potentials (-1.7 and 1.9 V versus Ag/Ag+), and high stability in the charged state for days at high concentration. Overall, the studies described herein have enabled the identification of a promising anolyte candidate for NRFBs and have also provided key insights into chemical design principles for future classes of MCC-based anolytes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available