4.8 Article

Reusable Electronic Tongue Based on Transient Receptor Potential Vanilloid 1 Nanodisc-Conjugated Graphene Field-Effect Transistor for a Spiciness-Related Pain Evaluation

Journal

ADVANCED MATERIALS
Volume -, Issue -, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.202206198

Keywords

capsaicin; graphene transistor; pain evaluation; reusable electrode; transient receptor potential vanilloid 1

Ask authors/readers for more resources

The sense of spiciness is related to the stimulation of vanilloid compounds in foods. A reusable electronic tongue based on a TRPV1 nanodisc conjugated graphene field-effect transistor is fabricated, which demonstrates spiciness-related pain evaluation using a reusable electrode. The platform shows highly selective and sensitive performance towards spiciness-related compounds repeatedly.
The sense of spiciness is related to the stimulation of vanilloid compounds contained in the foods. Although, the spiciness is commonly considered as the part of taste, it is more classified to the sense of pain stimulated on a tongue, namely, pungency, which is described as a tingling or burning on the tongue. Herein, first, a reusable electronic tongue based on a transient receptor potential vanilloid 1 (TRPV1) nanodisc conjugated graphene field-effect transistor is fabricated and spiciness-related pain evaluation with reusable electrode is demonstrated. The pungent compound reactive receptor TRPV1 is synthesized in the form of nanodiscs to maintain stability and reusability. The newly developed platform shows highly selective and sensitive performance toward each spiciness related vanilloid compound repeatably: 1 aM capsaicin, 10 aM dihydrocapsaicin, 1 fM piperine, 10 nM allicin, and 1 pM AITC. The binding mechanism is also examined by simulation. Furthermore, the elimination of the burning sensation on the tongue after eating spicy foods is not investigated. Based on the synthesis of micelles composed of casein protein (which is contained in skim milk) that remove pungent compounds bound to TRPV1 nanodisc, the deactivation of TRPV1 is investigated, and the electrode is reusable that mimics electronic tongue.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available