4.8 Article

Compromising Charge Generation and Recombination of Organic Photovoltaics with Mixed Diluent Strategy for Certified 19.4% Efficiency

Journal

ADVANCED MATERIALS
Volume 35, Issue 21, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.202300400

Keywords

carrier dynamics; dilution effect; multicomponent; organic solar cells

Ask authors/readers for more resources

A mixed diluent strategy, involving high bandgap NFA (BTP-S17) and low bandgap NFA (BTP-S16), is proposed to improve the device efficiency of organic photovoltaics (OPVs). The combination of BTP-S17 and BTP-S16 enables a better compromise between charge generation and recombination, leading to a high device performance of 19.76%.
The ternary blend is demonstrated as an effective strategy to promote the device performance of organic photovoltaics (OPVs) due to the dilution effect. While the compromise between the charge generation and recombination remains a challenge. Here, a mixed diluent strategy for further improving the device efficiency of OPV is proposed. Specifically, the high-performance OPV system with a polymer donor, i.e., PM6, and a nonfullerene acceptor (NFA), i.e., BTP-eC9, is diluted by the mixed diluents, which involve a high bandgap NFA of BTP-S17 and a low bandgap NFA of BTP-S16 (similar with that of the BTP-eC9). The BTP-S17 of better miscibility with BTP-eC9 can dramatically enhance the open-circuit voltage (V-OC), while the BTP-S16 maximizes the charge generation or the short-circuit current density (J(SC)). The interplay of BTP-17 and BTP-S16 enables better compromise between charge generation and recombination, thus leading to a high device performance of 19.76% (certified 19.41%), which is the best among single-junction OPVs. Further analysis on carrier dynamics validates the efficacy of mixed diluents for balancing charge generation and recombination, which can be further attributed to the more diverse energetic landscapes and improved morphology. Therefore, this work provides an effective strategy for high-performance OPV for further commercialization.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available