4.8 Article

Shift-Current Photovoltaics Based on a Non-Centrosymmetric Phase in In-Plane Ferroelectric SnS

Journal

ADVANCED MATERIALS
Volume -, Issue -, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.202301172

Keywords

2D materials; ferroelectric domains; non-centrosymmetry; shift currents; tin sulfide

Ask authors/readers for more resources

The non-centrosymmetric layer stacking of SnS crystals grown on a van der Waals substrate is achieved by physical vapor deposition, and the shift current of SnS is demonstrated through polarization angle dependence and circular photogalvanic effect. The presence of 180 degrees ferroelectric domains in SnS is confirmed by multiple techniques, and an atomic model of the ferroelectric domain boundary is proposed. The direct observation of shift current and ferroelectric domains opens up new possibilities for future studies on shift-current photovoltaics.
The shift-current photovoltaics of group-IV monochalcogenides has been predicted to be comparable to those of state-of-the-art Si-based solar cells. However, its exploration has been prevented from the centrosymmetric layer stacking in the thermodynamically stable bulk crystal. Herein, the non-centrosymmetric layer stacking of tin sulfide (SnS) is stabilized in the bottom regions of SnS crystals grown on a van der Waals substrate by physical vapor deposition and the shift current of SnS, by combining the polarization angle dependence and circular photogalvanic effect, is demonstrated. Furthermore, 180 degrees ferroelectric domains in SnS are verified through both piezoresponse force microscopy and shift-current mapping techniques. Based on these results, an atomic model of the ferroelectric domain boundary is proposed. The direct observation of shift current and ferroelectric domains reported herein paves a new path for future studies on shift-current photovoltaics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available