4.8 Article

Reinforcing Co-O Covalency via Ce(4f)O(2p)Co(3d) Gradient Orbital Coupling for High-Efficiency Oxygen Evolution

Journal

ADVANCED MATERIALS
Volume 35, Issue 30, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.202302462

Keywords

4f buffer bands; CeOCo unit site; CoO covalency; gradient orbital coupling; oxygen evolution

Ask authors/readers for more resources

In this work, a high-performance P-Ce SAs@CoO catalyst was designed and synthesized, and its oxygen evolution reaction (OER) mechanism and active sites were investigated through experimental and theoretical analysis. The results provide a basis for the structural design and mechanistic understanding of high-performance RE-TMO catalysts.
Rare-earth (RE)-based transition metal oxides (TMO) are emerging as a frontier toward the oxygen evolution reaction (OER), yet the knowledge regarding their electrocatalytic mechanism and active sites is very limited. In this work, atomically dispersed Ce on CoO is successfully designed and synthesized by an effective plasma (P)-assisted strategy as a model (P-Ce SAs@CoO) to investigate the origin of OER performance in RE-TMO systems. The P-Ce SAs@CoO exhibits favorable performance with an overpotential of only 261 mV at 10 mA cm(-2) and robust electrochemical stability, superior to individual CoO. X-ray absorption spectroscopy and in situ electrochemical Raman spectroscopy reveal that the Ce-induced electron redistribution inhibits Co-O bond breakage in the Co-O-Ce unit site. Theoretical analysis demonstrates that the gradient orbital coupling reinforces the Co-O covalency of the Ce(4f)O(2p)Co(3d) unit active site with an optimized Co-3d-e(g) occupancy, which can balance the adsorption strength of intermediates and in turn reach the apex of the theoretical OER maximum, in excellent agreement with experimental observations. It is believed that the establishment of this Ce-CoO model can set a basis for the mechanistic understanding and structural design of high-performance RE-TMO catalysts.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available