4.8 Review

Electrochemical Nitrate Reduction: Ammonia Synthesis and the Beyond

Journal

ADVANCED MATERIALS
Volume -, Issue -, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.202304021

Keywords

ammonia; C-N coupling; electrocatalysis; energy conversion; nitrate reduction reaction

Ask authors/readers for more resources

The natural nitrogen cycle is disrupted by human activities. Electrochemical nitrate reduction reaction (NO3RR) provides a sustainable strategy for nitrogen cycling by promoting green ammonia production. This review presents the recent important advances in electrochemical NO3RR and proposes future perspectives.
Natural nitrogen cycle has been severely disrupted by anthropogenic activities. The overuse of N-containing fertilizers induces the increase of nitrate level in surface and ground waters, and substantial emission of nitrogen oxides causes heavy air pollution. Nitrogen gas, as the main component of air, has been used for mass ammonia production for over a century, providing enough nutrition for agriculture to support world population increase. In the last decade, researchers have made great efforts to develop ammonia processes under ambient conditions to combat the intensive energy consumption and high carbon emission associated with the Haber-Bosch process. Among different techniques, electrochemical nitrate reduction reaction (NO3RR) can achieve nitrate removal and ammonia generation simultaneously using renewable electricity as the power, and there is an exponential growth of studies in this research direction. Here, a timely and comprehensive review on the important progresses of electrochemical NO3RR, covering the rational design of electrocatalysts, emerging C-N coupling reactions, and advanced energy conversion and storage systems is provided. Moreover, future perspectives are proposed to accelerate the industrialized NH3 production and green synthesis of chemicals, leading to a sustainable nitrogen cycle via prosperous N-based electrochemistry. The nitrogen cycle in global ecosystem has been greatly disrupted by intensive anthropogenic activities. Electrochemical nitrate reduction reaction (NO3RR) provides a promising strategy to green ammonia production, promoting sustainable nitrogen cycle. This review presents the recent important advances of electrochemical NO3RR and pushes the boundaries of NO3RR beyond ammonia synthesis by incorporating C-N coupling processes and novel N species-based batteries.image

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available