4.8 Article

Calibration-Free and High-Sensitivity Microwave Detectors Based on InAs/InP Nanowire Double Quantum Dots

Journal

ADVANCED FUNCTIONAL MATERIALS
Volume -, Issue -, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.202212517

Keywords

double quantum dots; InAs; InP nanowires; microwaves; nanoscale detectors

Ask authors/readers for more resources

Novel approaches exploiting the interaction between microwaves and quantum devices are being developed for efficient microwave detection. In this study, InAs/InP nanowire double quantum dot-based devices are used as nanoscale detectors to measure the local field without calibration. The detector performance is evaluated, and it is shown that these devices allow direct assessment of the microwave field with high sensitivity and spatial resolution, potentially advancing the development of high-performance microwave circuitries.
At the cutting-edge of microwave detection technology, novel approaches which exploit the interaction between microwaves and quantum devices are rising. In this study, microwaves are efficiently detected exploiting the unique transport features of InAs/InP nanowire double quantum dot-based devices, suitably configured to allow the precise and calibration-free measurement of the local field. Prototypical nanoscale detectors are operated both at zero and finite source-drain bias, addressing and rationalizing the microwave impact on the charge stability diagram. The detector performance is addressed by measuring its responsivity, quantum efficiency and noise equivalent power that, upon impedance matching optimization, are estimated to reach values up to approximate to 2000 A W-1, 0.04 and root HZ, respectively. The interaction mechanism between the microwave field and the quantum confined energy levels of the double quantum dots is unveiled and it is shown that these semiconductor nanostructures allow the direct assessment of the local intensity of the microwave field without the need for any calibration tool. Thus, the reported nanoscale devices based on III-V nanowire heterostructures represent a novel class of calibration-free and highly sensitive probes of microwave radiation, with nanometer-scale spatial resolution, that may foster the development of novel high-performance microwave circuitries.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available