4.8 Article

Highly Stretchable and Strain-Insensitive Liquid Metal based Elastic Kirigami Electrodes (LM-eKE)

Journal

ADVANCED FUNCTIONAL MATERIALS
Volume 33, Issue 30, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.202301388

Keywords

elastic kirigami; eutectic gallium-indium; liquid metal; soft electronics; strain-insensitive conductors; stretchable electronics

Ask authors/readers for more resources

Kirigami, a traditional paper-cutting art, is used to create mechanically robust circuitry for stretchable devices through structural deformation. This study introduces Liquid Metal based Elastic Kirigami Electrodes (LM-eKE) with eutectic gallium-indium (EGaIn) coating, which can be stretched to 820% strain with only a 33% increase in electrical resistance. The LM-eKE maintains high electrical conductivity even during extreme deformation, allowing for stable electrical operation of wearable health monitoring devices.
Kirigami, a traditional paper-cutting art, is a promising method for creating mechanically robust circuitry for unconventional devices capable of extreme stretchability through structural deformation. In this study, this design approach is expanded upon by introducing Liquid Metal based Elastic Kirigami Electrodes (LM-eKE) in which kirigami-patterned soft elastomers are coated with eutectic gallium-indium (EGaIn) alloy. Overcoming the mechanical and electrical limitations of previous efforts with paper-like kirigami, the all soft LM-eKE can be stretched to 820% strain while the electrical resistance only increases by 33%. This is enabled by the fluidic properties of the EGaIn coating, which maintains high electrical conductivity even as the elastic substrate undergoes extreme deformation. Applying the LM-eKE to human knee joints and fingers, the resistance change during physical activities is under 1.7%, thereby allowing for stable electrical operation of wearable health monitoring devices for tracking electroencephalogram (EEG) signals and other physiological activity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available