4.8 Article

Enhancing Memory Window Efficiency of Ferroelectric Transistor for Neuromorphic Computing via Two-Dimensional Materials Integration

Journal

ADVANCED FUNCTIONAL MATERIALS
Volume -, Issue -, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.202304657

Keywords

ferroelectric field-effect transistors; hafnium zirconium oxide; memory window efficiency; neuromorphic computing; 2D materials

Ask authors/readers for more resources

This study demonstrates the capabilities of an integrated ferroelectric HfO2 and 2D MoS2 channel FeFET for achieving high-performance 4-bit per cell memory and low variation and power consumption synapses. The device retains the ability to implement diverse learning rules and accurately recognizes MNIST handwritten digits with over 94% accuracy using online training mode. These results highlight the potential of FeFET-based in-memory computing for future neuromorphic computing applications.
In-memory computing, particularly neuromorphic computing, has emerged as a promising solution to overcome the energy and time-consuming challenges associated with the von Neumann architecture. The ferroelectric field-effect transistor (FeFET) technology, with its fast and energy-efficient switching and nonvolatile memory, is a potential candidate for enabling both computing and memory within a single transistor. In this study, the capabilities of an integrated ferroelectric HfO2 and 2D MoS2 channel FeFET in achieving high-performance 4-bit per cell memory with low variation and power consumption synapses, while retaining the ability to implement diverse learning rules, are demonstrated. Notably, this device accurately recognizes MNIST handwritten digits with over 94% accuracy using online training mode. These results highlight the potential of FeFET-based in-memory computing for future neuromorphic computing applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available