4.8 Article

Strain Retarding in Multilayered Hierarchical Sn-Doped Sb Nanoarray for Durable Sodium Storage

Journal

ADVANCED FUNCTIONAL MATERIALS
Volume -, Issue -, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.202300914

Keywords

multilayered structures; Sb anodes; self-supported nanoarrays; sodium storages; strain engineering

Ask authors/readers for more resources

Inspired by the multilayered structure of pine trees, researchers developed a 3D hierarchical multilayered tin-doped antimony nanoarray coated with a thin carbon layer. This material exhibited improved kinetic properties for sodium diffusion and lower volume expansion, leading to enhanced structural stability and excellent electrochemical performance for sodium storage.
Antimony (Sb) is a potential electrode material for sodium (Na) storage due to its high theoretical capacity of 660 mAh g(-1). Yet, the alloy/dealloy reaction between Na and Sb induces detrimental structural strain that inevitably leads to electrode failure, further resulting in deteriorated rate performance and cycle life. Herein, inspired by the multilayered structure of the pine trees, 3D hierarchical multilayered tin (Sn)-doped Sb nanoarray coated with a thin carbon (C) layer (Sb(Sn)@C) is developed. Density functional theory calculation results suggest that Sb(Sn)@C offers better kinetic properties for Na diffusion, and lower volume expansion upon sodium intercalation as compared to the counterparts without Sn dopant or carbon coating. Moreover, the simulation results based on finite element analysis suggest that the unique hierarchical multilayered construction not only provides highly efficient Na+ utilization, but also builds a uniform von Mises stress distribution that effectively confines structural strain induced during Na+ insertion. This is also verified by nanoindentation measurement that Sb(Sn)@C shows higher elastic modulus and hardness than Sb(Sn) and pure Sb, indicating best mechanical stability. As expected, Sb(Sn)@C achieves excellent electrochemical capability for sodium storage with high reversible capacity, enhanced cyclability, and remarkable rate performance.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available