4.8 Article

Benchmarking and Critical Design Considerations of Zero-Excess Li-Metal Batteries

Journal

ADVANCED FUNCTIONAL MATERIALS
Volume 33, Issue 24, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.202214891

Keywords

anode-free; designs; energy densities; Li-ion batteries; zero-excess

Ask authors/readers for more resources

Zero-excess Li metal batteries (ZELMBs) have attracted much attention due to their potential to increase energy density and reduce cost. However, challenges related to non-uniform deposition of Li have limited their practical application. Promising approaches including modifications of current collector, electrolyte, and cycling protocols have been developed. These approaches improve stability but reduce energy density.
Zero-excess Li metal batteries (ZELMBs), in which a Li-anode is formed in situ during charging, have received much attention in recent years. ZELMBs bear great potential to increase energy density and facilitate battery production, thereby reducing cost as well as material and energy consumption. Practical application of ZELMBs has so far been limited by challenges related to the non-uniform deposition behavior of Li, leading to inadequate performance and safety concerns. To address these issues, promising approaches have been developed in recent years, including modifications of the current collector, electrolyte, and cycling protocols. While these approaches improve the long-term stability of ZELMB, they also reduce the energy density by introducing inactive materials into the cell. Herein, critical design criteria for the various optimization approaches in ZELMB research are established. Nominal volumetric and gravimetric energy densities are determined based on the degree of modification. Thresholds are determined for each of the strategies at which the energy density gain of ZELMB vanishes compared to other cell configurations. These findings are compared to literature results to provide guidance for the further development of ZELMB.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available