4.8 Article

Minimizing Energy Barrier in Intermediate Connection Layer for Monolithic Tandem WPeLEDs with Wide Color Gamut

Journal

ADVANCED FUNCTIONAL MATERIALS
Volume 33, Issue 21, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.202215189

Keywords

carrier regulations; intermediate connection layers; monolithic WPeLEDs; wide color gamut displays

Ask authors/readers for more resources

This study successfully developed the first monolithic tandem multicolor perovskite LED and white LED, solving issues such as solvent incompatibility, ion exchange, and energy transfer between different emission centers by utilizing an optimal intermediate connection layer. The multicolor LED achieved the best external quantum efficiency of 1.8% and the highest luminance of 4844 cd m(-2). The monolithic white LED reached a color gamut of 130%, offering a feasible strategy for developing wide-color gamut perovskite displays.
Perovskite light-emitting diodes (PeLEDs) show promising prospects in the wide color gamut display owing to their ultra-narrow full width at half maximum (FWHM). However, up to now, all perovskite white LEDs integrated by standard red, green, and blue perovskite emitters, namely, monolithic white PeLEDs (WPeLEDs), have been rarely reported, owing to facing some issues, e.g., solvent incompatibility in solution technique, ion exchange, and energy transfer between different emission centers. Herein, centered on these issues, an optimal intermediate connection layer (ICL) of Po-T2T/LiF/Ag/HAT-CN/MoO3 is adopted to successfully develop monolithic tandem multicolor PeLEDs and WPeLEDs for the first time. The multicolor PeLEDs can achieve the best external quantum efficiency of 1.8% and the highest luminance of 4844 cd m(-2). Besides, the red/green/blue (R/G/B) monolithic tandem WPeLED shows a standard white International Commission on Illumination coordinate of (0.33, 0.33) and achieves an extremely wide color gamut reaching National Television Standards Committee of 130%. This study is the first to realize the standard R/G/B co-electroluminescence in a monolithic perovskite device and offers a feasible strategy for developing wide-color gamut perovskite displays.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available