4.6 Review

A Critical Review of Laser Shock Peening of Aircraft Engine Components

Journal

ADVANCED ENGINEERING MATERIALS
Volume -, Issue -, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adem.202201451

Keywords

aircraft engines; engine blades; fatigue; laser shock peening

Ask authors/readers for more resources

Many aviation accidents are caused by failure of aircraft engine components, particularly engine blades which are susceptible to fatigue fracture and impact damage. The United States has successfully implemented laser shock peening (LSP) to enhance fatigue performance of these components. This review provides an overview of LSP development for treating aircraft engine components, with a focus on limitations and challenges. It serves as a reference for future research to improve component performance.
Many aviation accidents are caused by the failure of aircraft engine components, and engine blades are especially vulnerable to high-cycle fatigue fracture in severe working environments as well as to impact damage caused by foreign objects. To address this problem, the United States took the lead and has been successful in implementing laser shock peening (LSP) as a surface treatment for aircraft engine components to enhance their fatigue performance. This review provides an overview of the development of LSP for use in treating aircraft engine components over the past three decades, with a brief introduction to the development of high-energy pulsed lasers for LSP. A particular focus of this review is on the limitations and challenges associated with the application of LSP for treating critical aircraft engine components. It is hoped that this review serves as a reference for future research and development that can lead to better performance of these components.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available