4.7 Article

When architecture meets AI: A deep reinforcement learning approach for system of systems design

Journal

ADVANCED ENGINEERING INFORMATICS
Volume 56, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.aei.2023.101965

Keywords

Deep reinforcement learning; System of systems; Combinatorial optimization; Tradespace exploration

Ask authors/readers for more resources

The design of System of Systems (SoS) has been a topic of great concern, especially in military applications. This paper proposes a deep reinforcement learning approach called DRL-SoSDP to address the challenges of SoS architecting. By combining artificial intelligence techniques and actor-critic algorithms, DRL-SoSDP achieves superior results in solution quality and computation time, even in large scale cases.
How to design System of Systems has been widely concerned in recent years, especially in military applications. This problem is also known as SoS architecting, which can be boiled down to two subproblems: selecting a number of systems from a set of candidates and specifying the tasks to be completed for each selected system. Essentially, such a problem can be reduced to a combinatorial optimization problem. Traditional exact solvers such as branch-bound algorithm are not efficient enough to deal with large scale cases. Heuristic algorithms are more scalable, but if input changes, these algorithms have to restart the searching process. Re-searching process may take a long time and interfere with the mission achievement of SoS in highly dynamic scenarios, e.g., in the Mosaic Warfare. In this paper, we combine artificial intelligence with SoS architecting and propose a deep reinforcement learning approach DRL-SoSDP for SoS design. Deep neural networks and actor-critic algorithms are used to find the optimal solution with constraints. Evaluation results show that the proposed approach is superior to heuristic algorithms in both solution quality and computation time, especially in large scale cases. DRL-SoSDP can find great solutions in a near real-time manner, showing great potential for cases that require an instant reply. DRL-SoSDP also shows good generalization ability and can find better results than heuristic algorithms even when the scale of SoS is much larger than that in training data.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available