4.8 Article

Unravelling the Effects of Grain Boundary and Chemical Doping on Electron-Hole Recombination in CH3NH3PbI3 Perovskite by Time-Domain Atomistic Simulation

Journal

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
Volume 138, Issue 11, Pages 3884-3890

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jacs.6b00645

Keywords

-

Funding

  1. National Science Foundation of China [21573022]
  2. Science Foundation Ireland SIRG Program [11/SIRG/E2172]
  3. U.S. Department of Energy [DE-SC0014429]
  4. Science Foundation Ireland (SFI) [11/SIRG/E2172] Funding Source: Science Foundation Ireland (SFI)

Ask authors/readers for more resources

Advancing organohalide perovskite solar cells requires understanding of carrier dynamics. Electron hole recombination is a particularly important process because it constitutes a major pathway of energy and current losses. Grain boundaries (GBs) are common in methylammonium lead iodine CH3NH3PbI3 (MAPbI(3)) perovskite polycrystalline films. First-principles calculations have suggested that GBs have little effect on the recombination; however, experiments defy this prediction. Using nonadiabatic (NA) molecular dynamics combined with time-domain density functional theory, we show that GBs notably accelerate the electron hole recombination in MAPbI(3). First, GBs enhance the electron-phonon NA coupling by localizing and contributing to the electron and hole wave functions and by creating additional phonon modes that couple to the electronic degrees of freedom. Second, GBs decrease the MAPbI(3) bandgap, reducing the number of vibrational quanta needed to accommodate the electronic energy loss. Third, the phonon-induced loss of electronic coherence remains largely unchanged and not accelerated, as one may expect from increased electron-phonon coupling. Further, replacing iodines by chlorines at GBs reduces the electron hole recombination. By pushing the highest occupied molecular orbital (HOMO) density away from the boundary, chlorines restore the NA coupling close to the value observed in pristine MAPbI(3). By introducing higher-frequency phonons and increasing fluctuation of the electronic gap, chlorines shorten electronic coherence. Both factors compete successfully with. the reduced bandgap relative to pristine MAPbI(3) and favor long excited-state lifetimes. The simulations show excellent agreement with experiment and characterize how GBs and chlorine dopants affect electron-hole recombination in perovskite solar cells. The simulations suggest a route to increased photon-to-electron conversion efficiencies through rational GB passivation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available